Loading…

Noncommutative Blowups of Elliptic Algebras

We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element g of degree 1, T/gT is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-11
Main Authors: Rogalski, D, Sierra, S J, Stafford, J T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Rogalski, D
Sierra, S J
Stafford, J T
description We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element g of degree 1, T/gT is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective divisor d on E whose degree is not too big, we construct a blowup T(d) of T at d and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of T(d) is quite rigid. Our results generalise those of the first author. In the companion paper "Classifying Orders in the Sklyanin Algebra", we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.
doi_str_mv 10.48550/arxiv.1308.2216
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083837414</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083837414</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514-bae680bc64f693fd06086bb2758900bda35cebd90000b9fa331b0df2289596ff3</originalsourceid><addsrcrecordid>eNotjj1PwzAURS0kJKrSnTESI0p4fs927LFU5UOqYOle2YmNUrl1iJPCzycSTPee5Z7L2B2HSmgp4dEOP92l4gS6QuTqii2QiJdaIN6wVc5HAEBVo5S0YA_v6dyk02ka7dhdfPEU0_fU5yKFYhtj149dU6zjp3eDzbfsOtiY_eo_l2z_vN1vXsvdx8vbZr0rreSidNYrDa5RIihDoQUFWjmHtdQGwLWWZONdO_eZTLDzNwdtQNRGGhUCLdn932w_pK_J5_FwTNNwno0HBE2aasEF_QJwiULi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083837414</pqid></control><display><type>article</type><title>Noncommutative Blowups of Elliptic Algebras</title><source>Publicly Available Content Database</source><creator>Rogalski, D ; Sierra, S J ; Stafford, J T</creator><creatorcontrib>Rogalski, D ; Sierra, S J ; Stafford, J T</creatorcontrib><description>We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element g of degree 1, T/gT is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective divisor d on E whose degree is not too big, we construct a blowup T(d) of T at d and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of T(d) is quite rigid. Our results generalise those of the first author. In the companion paper "Classifying Orders in the Sklyanin Algebra", we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1308.2216</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Automorphisms ; Classification ; Curves</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083837414?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Rogalski, D</creatorcontrib><creatorcontrib>Sierra, S J</creatorcontrib><creatorcontrib>Stafford, J T</creatorcontrib><title>Noncommutative Blowups of Elliptic Algebras</title><title>arXiv.org</title><description>We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element g of degree 1, T/gT is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective divisor d on E whose degree is not too big, we construct a blowup T(d) of T at d and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of T(d) is quite rigid. Our results generalise those of the first author. In the companion paper "Classifying Orders in the Sklyanin Algebra", we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.</description><subject>Algebra</subject><subject>Automorphisms</subject><subject>Classification</subject><subject>Curves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjj1PwzAURS0kJKrSnTESI0p4fs927LFU5UOqYOle2YmNUrl1iJPCzycSTPee5Z7L2B2HSmgp4dEOP92l4gS6QuTqii2QiJdaIN6wVc5HAEBVo5S0YA_v6dyk02ka7dhdfPEU0_fU5yKFYhtj149dU6zjp3eDzbfsOtiY_eo_l2z_vN1vXsvdx8vbZr0rreSidNYrDa5RIihDoQUFWjmHtdQGwLWWZONdO_eZTLDzNwdtQNRGGhUCLdn932w_pK_J5_FwTNNwno0HBE2aasEF_QJwiULi</recordid><startdate>20151130</startdate><enddate>20151130</enddate><creator>Rogalski, D</creator><creator>Sierra, S J</creator><creator>Stafford, J T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151130</creationdate><title>Noncommutative Blowups of Elliptic Algebras</title><author>Rogalski, D ; Sierra, S J ; Stafford, J T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514-bae680bc64f693fd06086bb2758900bda35cebd90000b9fa331b0df2289596ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algebra</topic><topic>Automorphisms</topic><topic>Classification</topic><topic>Curves</topic><toplevel>online_resources</toplevel><creatorcontrib>Rogalski, D</creatorcontrib><creatorcontrib>Sierra, S J</creatorcontrib><creatorcontrib>Stafford, J T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rogalski, D</au><au>Sierra, S J</au><au>Stafford, J T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Noncommutative Blowups of Elliptic Algebras</atitle><jtitle>arXiv.org</jtitle><date>2015-11-30</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We develop a ring-theoretic approach for blowing up many noncommutative projective surfaces. Let T be an elliptic algebra (meaning that, for some central element g of degree 1, T/gT is a twisted homogeneous coordinate ring of an elliptic curve E at an infinite order automorphism). Given an effective divisor d on E whose degree is not too big, we construct a blowup T(d) of T at d and show that it is also an elliptic algebra. Consequently it has many good properties: for example, it is strongly noetherian, Auslander-Gorenstein, and has a balanced dualizing complex. We also show that the ideal structure of T(d) is quite rigid. Our results generalise those of the first author. In the companion paper "Classifying Orders in the Sklyanin Algebra", we apply our results to classify orders in (a Veronese subalgebra of) a generic cubic or quadratic Sklyanin algebra.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1308.2216</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083837414
source Publicly Available Content Database
subjects Algebra
Automorphisms
Classification
Curves
title Noncommutative Blowups of Elliptic Algebras
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T02%3A59%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Noncommutative%20Blowups%20of%20Elliptic%20Algebras&rft.jtitle=arXiv.org&rft.au=Rogalski,%20D&rft.date=2015-11-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1308.2216&rft_dat=%3Cproquest%3E2083837414%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514-bae680bc64f693fd06086bb2758900bda35cebd90000b9fa331b0df2289596ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083837414&rft_id=info:pmid/&rfr_iscdi=true