Loading…

Inverse Fourier Transform for Bi-Complex Variables

In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper we use the idempotent representation of bicomplex-valued functions as projections on t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-11
Main Authors: Banerjee, A, Datta, S K, Hoque, Md A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Banerjee, A
Datta, S K
Hoque, Md A
description In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083860070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083860070</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838600703</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8swrSy0qTlVwyy8tykwtUggpSswrTssvylUAEgpOmbrO-bkFOakVCmGJRZmJSTmpxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-C2hWHlAq3sjAwtjCzMDA3MCYOFUAzE4znw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083860070</pqid></control><display><type>article</type><title>Inverse Fourier Transform for Bi-Complex Variables</title><source>Publicly Available Content Database</source><creator>Banerjee, A ; Datta, S K ; Hoque, Md A</creator><creatorcontrib>Banerjee, A ; Datta, S K ; Hoque, Md A</creatorcontrib><description>In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Complex variables ; Fourier transforms</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083860070?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Banerjee, A</creatorcontrib><creatorcontrib>Datta, S K</creatorcontrib><creatorcontrib>Hoque, Md A</creatorcontrib><title>Inverse Fourier Transform for Bi-Complex Variables</title><title>arXiv.org</title><description>In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions.</description><subject>Complex variables</subject><subject>Fourier transforms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8swrSy0qTlVwyy8tykwtUggpSswrTssvylUAEgpOmbrO-bkFOakVCmGJRZmJSTmpxTwMrGmJOcWpvFCam0HZzTXE2UO3oCi_sDS1uCQ-C2hWHlAq3sjAwtjCzMDA3MCYOFUAzE4znw</recordid><startdate>20151104</startdate><enddate>20151104</enddate><creator>Banerjee, A</creator><creator>Datta, S K</creator><creator>Hoque, Md A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151104</creationdate><title>Inverse Fourier Transform for Bi-Complex Variables</title><author>Banerjee, A ; Datta, S K ; Hoque, Md A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838600703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Complex variables</topic><topic>Fourier transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, A</creatorcontrib><creatorcontrib>Datta, S K</creatorcontrib><creatorcontrib>Hoque, Md A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, A</au><au>Datta, S K</au><au>Hoque, Md A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Inverse Fourier Transform for Bi-Complex Variables</atitle><jtitle>arXiv.org</jtitle><date>2015-11-04</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>In this paper we examine the existence of bicomplexified inverse Fourier transform as an extension of its complexified inverse version within the region of convergence of bicomplex Fourier transform. In this paper we use the idempotent representation of bicomplex-valued functions as projections on the auxiliary complex spaces of the components of bicomplex numbers along two orthogonal,idempotent hyperbolic directions.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083860070
source Publicly Available Content Database
subjects Complex variables
Fourier transforms
title Inverse Fourier Transform for Bi-Complex Variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Inverse%20Fourier%20Transform%20for%20Bi-Complex%20Variables&rft.jtitle=arXiv.org&rft.au=Banerjee,%20A&rft.date=2015-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083860070%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20838600703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083860070&rft_id=info:pmid/&rfr_iscdi=true