Loading…

Selective inference in regression models with groups of variables

We provide a general mathematical framework for selective inference with supervised model selection procedures characterized by quadratic forms in the outcome variable. Forward stepwise with groups of variables is an important special case as it allows models with categorical variables or factors. M...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2015-11
Main Authors: Loftus, Joshua R, Taylor, Jonathan E
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Loftus, Joshua R
Taylor, Jonathan E
description We provide a general mathematical framework for selective inference with supervised model selection procedures characterized by quadratic forms in the outcome variable. Forward stepwise with groups of variables is an important special case as it allows models with categorical variables or factors. Models can be chosen by AIC, BIC, or a fixed number of steps. We provide an exact significance test for each group of variables in the selected model based on an appropriately truncated \(\chi\) or \(F\) distribution for the cases of known and unknown \(\sigma^2\) respectively. An efficient software implementation is available as a package in the R statistical programming language.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083869121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083869121</sourcerecordid><originalsourceid>FETCH-proquest_journals_20838691213</originalsourceid><addsrcrecordid>eNqNisEKgkAQQJcgSMp_GOgsrLNpdowoutc9zEZb2XZtRu33K-gDOr0H701UhMakSbFCnKlYpNVaY77GLDOR2p7IUdXbkcD6mph89TVgaphEbPDwCDdyAi_b36HhMHQCoYaxZFteHclCTevSCcU_ztXysD_vjknH4TmQ9Jc2DOw_6YK6MEW-STE1_11vuvo57w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083869121</pqid></control><display><type>article</type><title>Selective inference in regression models with groups of variables</title><source>Publicly Available Content Database</source><creator>Loftus, Joshua R ; Taylor, Jonathan E</creator><creatorcontrib>Loftus, Joshua R ; Taylor, Jonathan E</creatorcontrib><description>We provide a general mathematical framework for selective inference with supervised model selection procedures characterized by quadratic forms in the outcome variable. Forward stepwise with groups of variables is an important special case as it allows models with categorical variables or factors. Models can be chosen by AIC, BIC, or a fixed number of steps. We provide an exact significance test for each group of variables in the selected model based on an appropriately truncated \(\chi\) or \(F\) distribution for the cases of known and unknown \(\sigma^2\) respectively. An efficient software implementation is available as a package in the R statistical programming language.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Inference ; Programming languages ; Quadratic forms ; Regression models ; Statistical analysis ; Variables</subject><ispartof>arXiv.org, 2015-11</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083869121?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,36995,44573</link.rule.ids></links><search><creatorcontrib>Loftus, Joshua R</creatorcontrib><creatorcontrib>Taylor, Jonathan E</creatorcontrib><title>Selective inference in regression models with groups of variables</title><title>arXiv.org</title><description>We provide a general mathematical framework for selective inference with supervised model selection procedures characterized by quadratic forms in the outcome variable. Forward stepwise with groups of variables is an important special case as it allows models with categorical variables or factors. Models can be chosen by AIC, BIC, or a fixed number of steps. We provide an exact significance test for each group of variables in the selected model based on an appropriately truncated \(\chi\) or \(F\) distribution for the cases of known and unknown \(\sigma^2\) respectively. An efficient software implementation is available as a package in the R statistical programming language.</description><subject>Inference</subject><subject>Programming languages</subject><subject>Quadratic forms</subject><subject>Regression models</subject><subject>Statistical analysis</subject><subject>Variables</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNisEKgkAQQJcgSMp_GOgsrLNpdowoutc9zEZb2XZtRu33K-gDOr0H701UhMakSbFCnKlYpNVaY77GLDOR2p7IUdXbkcD6mph89TVgaphEbPDwCDdyAi_b36HhMHQCoYaxZFteHclCTevSCcU_ztXysD_vjknH4TmQ9Jc2DOw_6YK6MEW-STE1_11vuvo57w</recordid><startdate>20151104</startdate><enddate>20151104</enddate><creator>Loftus, Joshua R</creator><creator>Taylor, Jonathan E</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151104</creationdate><title>Selective inference in regression models with groups of variables</title><author>Loftus, Joshua R ; Taylor, Jonathan E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20838691213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Inference</topic><topic>Programming languages</topic><topic>Quadratic forms</topic><topic>Regression models</topic><topic>Statistical analysis</topic><topic>Variables</topic><toplevel>online_resources</toplevel><creatorcontrib>Loftus, Joshua R</creatorcontrib><creatorcontrib>Taylor, Jonathan E</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loftus, Joshua R</au><au>Taylor, Jonathan E</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Selective inference in regression models with groups of variables</atitle><jtitle>arXiv.org</jtitle><date>2015-11-04</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We provide a general mathematical framework for selective inference with supervised model selection procedures characterized by quadratic forms in the outcome variable. Forward stepwise with groups of variables is an important special case as it allows models with categorical variables or factors. Models can be chosen by AIC, BIC, or a fixed number of steps. We provide an exact significance test for each group of variables in the selected model based on an appropriately truncated \(\chi\) or \(F\) distribution for the cases of known and unknown \(\sigma^2\) respectively. An efficient software implementation is available as a package in the R statistical programming language.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2015-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083869121
source Publicly Available Content Database
subjects Inference
Programming languages
Quadratic forms
Regression models
Statistical analysis
Variables
title Selective inference in regression models with groups of variables
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T23%3A31%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Selective%20inference%20in%20regression%20models%20with%20groups%20of%20variables&rft.jtitle=arXiv.org&rft.au=Loftus,%20Joshua%20R&rft.date=2015-11-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083869121%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20838691213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083869121&rft_id=info:pmid/&rfr_iscdi=true