Loading…
A Nonlinear Schrödinger Wave Equation With Linear Quantum Behavior
We show that a nonlinear Schr\"odinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum th...
Saved in:
Published in: | arXiv.org 2014-03 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Richardson, Chris D Schlagheck, Peter Martin, John Vandewalle, Nicolas Bastin, Thierry |
description | We show that a nonlinear Schr\"odinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schr\"odinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant. |
doi_str_mv | 10.48550/arxiv.1403.2177 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083970687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083970687</sourcerecordid><originalsourceid>FETCH-proquest_journals_20839706873</originalsourceid><addsrcrecordid>eNqNysEKgjAAgOERBEl57zjorM1N3TqWGB0iiAKPMmrlxLacm_RkvUAvVlAP0Ok__B8A0wiFMUsSNOfmIfswihEJcUTpAHiYkChgMcYj4HddjRDCKcVJQjyQLeFOq0YqwQ08nCrzep6lugoDC94LmLeOW6kVLKSt4PbL9o4r625wJSreS20mYHjhTSf8X8dgts6P2Sa4G9060dmy1s6ozyoxYmRBUcoo-U-9AdxJQHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083970687</pqid></control><display><type>article</type><title>A Nonlinear Schrödinger Wave Equation With Linear Quantum Behavior</title><source>Publicly Available Content Database</source><creator>Richardson, Chris D ; Schlagheck, Peter ; Martin, John ; Vandewalle, Nicolas ; Bastin, Thierry</creator><creatorcontrib>Richardson, Chris D ; Schlagheck, Peter ; Martin, John ; Vandewalle, Nicolas ; Bastin, Thierry</creatorcontrib><description>We show that a nonlinear Schr\"odinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schr\"odinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1403.2177</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nonlinearity ; Plancks constant ; Quantum mechanics ; Quantum physics ; Quantum theory ; Scaling ; Wave equations</subject><ispartof>arXiv.org, 2014-03</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083970687?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Richardson, Chris D</creatorcontrib><creatorcontrib>Schlagheck, Peter</creatorcontrib><creatorcontrib>Martin, John</creatorcontrib><creatorcontrib>Vandewalle, Nicolas</creatorcontrib><creatorcontrib>Bastin, Thierry</creatorcontrib><title>A Nonlinear Schrödinger Wave Equation With Linear Quantum Behavior</title><title>arXiv.org</title><description>We show that a nonlinear Schr\"odinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schr\"odinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.</description><subject>Nonlinearity</subject><subject>Plancks constant</subject><subject>Quantum mechanics</subject><subject>Quantum physics</subject><subject>Quantum theory</subject><subject>Scaling</subject><subject>Wave equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNysEKgjAAgOERBEl57zjorM1N3TqWGB0iiAKPMmrlxLacm_RkvUAvVlAP0Ok__B8A0wiFMUsSNOfmIfswihEJcUTpAHiYkChgMcYj4HddjRDCKcVJQjyQLeFOq0YqwQ08nCrzep6lugoDC94LmLeOW6kVLKSt4PbL9o4r625wJSreS20mYHjhTSf8X8dgts6P2Sa4G9060dmy1s6ozyoxYmRBUcoo-U-9AdxJQHs</recordid><startdate>20140311</startdate><enddate>20140311</enddate><creator>Richardson, Chris D</creator><creator>Schlagheck, Peter</creator><creator>Martin, John</creator><creator>Vandewalle, Nicolas</creator><creator>Bastin, Thierry</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140311</creationdate><title>A Nonlinear Schrödinger Wave Equation With Linear Quantum Behavior</title><author>Richardson, Chris D ; Schlagheck, Peter ; Martin, John ; Vandewalle, Nicolas ; Bastin, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20839706873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Nonlinearity</topic><topic>Plancks constant</topic><topic>Quantum mechanics</topic><topic>Quantum physics</topic><topic>Quantum theory</topic><topic>Scaling</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Richardson, Chris D</creatorcontrib><creatorcontrib>Schlagheck, Peter</creatorcontrib><creatorcontrib>Martin, John</creatorcontrib><creatorcontrib>Vandewalle, Nicolas</creatorcontrib><creatorcontrib>Bastin, Thierry</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richardson, Chris D</au><au>Schlagheck, Peter</au><au>Martin, John</au><au>Vandewalle, Nicolas</au><au>Bastin, Thierry</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Nonlinear Schrödinger Wave Equation With Linear Quantum Behavior</atitle><jtitle>arXiv.org</jtitle><date>2014-03-11</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We show that a nonlinear Schr\"odinger wave equation can reproduce all the features of linear quantum mechanics. This nonlinear wave equation is obtained by exploring, in a uniform language, the transition from fully classical theory governed by a nonlinear classical wave equation to quantum theory. The classical wave equation includes a nonlinear classicality enforcing potential which when eliminated transforms the wave equation into the linear Schr\"odinger equation. We show that it is not necessary to completely cancel this nonlinearity to recover the linear behavior of quantum mechanics. Scaling the classicality enforcing potential is sufficient to have quantum-like features appear and is equivalent to scaling Planck's constant.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1403.2177</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083970687 |
source | Publicly Available Content Database |
subjects | Nonlinearity Plancks constant Quantum mechanics Quantum physics Quantum theory Scaling Wave equations |
title | A Nonlinear Schrödinger Wave Equation With Linear Quantum Behavior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Nonlinear%20Schr%C3%B6dinger%20Wave%20Equation%20With%20Linear%20Quantum%20Behavior&rft.jtitle=arXiv.org&rft.au=Richardson,%20Chris%20D&rft.date=2014-03-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1403.2177&rft_dat=%3Cproquest%3E2083970687%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20839706873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083970687&rft_id=info:pmid/&rfr_iscdi=true |