Loading…

Evaluation of Image Segmentation and Filtering With ANN in the Papaya Leaf

Precision agriculture is area with lack of cheap technology. The refinement of the production system brings large advantages to the producer and the use of images makes the monitoring a more cheap methodology. Macronutrients monitoring can to determine the health and vulnerability of the plant in sp...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-03
Main Authors: Sartin, Maicon A, Alexandre C R da Silva
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Sartin, Maicon A
Alexandre C R da Silva
description Precision agriculture is area with lack of cheap technology. The refinement of the production system brings large advantages to the producer and the use of images makes the monitoring a more cheap methodology. Macronutrients monitoring can to determine the health and vulnerability of the plant in specific stages. In this paper is analyzed the method based on computational intelligence to work with image segmentation in the identification of symptoms of plant nutrient deficiency. Artificial neural networks are evaluated for image segmentation and filtering, several variations of parameters and insertion impulsive noise were evaluated too. Satisfactory results are achieved with artificial neural for segmentation same with high noise levels.
doi_str_mv 10.48550/arxiv.1403.3057
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083975597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083975597</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517-37b04881b536dbc3dcfd6ad1840dc35c316b5839bb0a363e0f14bb3070138f2d3</originalsourceid><addsrcrecordid>eNotjVFrwjAURsNgMHG-7zGw57qb3KaJjyK6KcUNJuxRbpq0Rmrr2lS2fz_BPX1w4JyPsScB09QoBS_U_YTLVKSAUwSl79hIIorEpFI-sEnfHwFAZloqhSO2WV6oHiiGtuFtydcnqjz_9NXJN_FGqXF8Ferou9BU_CvEA59vtzw0PB48_6Az_RLPPZWP7L6kuveT_x2z3Wq5W7wl-fvrejHPE1JCJ6gtpMYIqzBztkBXlC4jJ0wKrkBVoMisMjizFggz9FCK1FoEDQJNKR2O2fMte-7a78H3cX9sh665Pu4lXEWt1EzjH9IgTLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083975597</pqid></control><display><type>article</type><title>Evaluation of Image Segmentation and Filtering With ANN in the Papaya Leaf</title><source>ProQuest - Publicly Available Content Database</source><creator>Sartin, Maicon A ; Alexandre C R da Silva</creator><creatorcontrib>Sartin, Maicon A ; Alexandre C R da Silva</creatorcontrib><description>Precision agriculture is area with lack of cheap technology. The refinement of the production system brings large advantages to the producer and the use of images makes the monitoring a more cheap methodology. Macronutrients monitoring can to determine the health and vulnerability of the plant in specific stages. In this paper is analyzed the method based on computational intelligence to work with image segmentation in the identification of symptoms of plant nutrient deficiency. Artificial neural networks are evaluated for image segmentation and filtering, several variations of parameters and insertion impulsive noise were evaluated too. Satisfactory results are achieved with artificial neural for segmentation same with high noise levels.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1403.3057</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Artificial intelligence ; Artificial neural networks ; Image filters ; Image segmentation ; Markov analysis ; Neural networks ; Noise levels ; Signs and symptoms</subject><ispartof>arXiv.org, 2014-03</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083975597?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Sartin, Maicon A</creatorcontrib><creatorcontrib>Alexandre C R da Silva</creatorcontrib><title>Evaluation of Image Segmentation and Filtering With ANN in the Papaya Leaf</title><title>arXiv.org</title><description>Precision agriculture is area with lack of cheap technology. The refinement of the production system brings large advantages to the producer and the use of images makes the monitoring a more cheap methodology. Macronutrients monitoring can to determine the health and vulnerability of the plant in specific stages. In this paper is analyzed the method based on computational intelligence to work with image segmentation in the identification of symptoms of plant nutrient deficiency. Artificial neural networks are evaluated for image segmentation and filtering, several variations of parameters and insertion impulsive noise were evaluated too. Satisfactory results are achieved with artificial neural for segmentation same with high noise levels.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Image filters</subject><subject>Image segmentation</subject><subject>Markov analysis</subject><subject>Neural networks</subject><subject>Noise levels</subject><subject>Signs and symptoms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjVFrwjAURsNgMHG-7zGw57qb3KaJjyK6KcUNJuxRbpq0Rmrr2lS2fz_BPX1w4JyPsScB09QoBS_U_YTLVKSAUwSl79hIIorEpFI-sEnfHwFAZloqhSO2WV6oHiiGtuFtydcnqjz_9NXJN_FGqXF8Ferou9BU_CvEA59vtzw0PB48_6Az_RLPPZWP7L6kuveT_x2z3Wq5W7wl-fvrejHPE1JCJ6gtpMYIqzBztkBXlC4jJ0wKrkBVoMisMjizFggz9FCK1FoEDQJNKR2O2fMte-7a78H3cX9sh665Pu4lXEWt1EzjH9IgTLI</recordid><startdate>20140312</startdate><enddate>20140312</enddate><creator>Sartin, Maicon A</creator><creator>Alexandre C R da Silva</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140312</creationdate><title>Evaluation of Image Segmentation and Filtering With ANN in the Papaya Leaf</title><author>Sartin, Maicon A ; Alexandre C R da Silva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517-37b04881b536dbc3dcfd6ad1840dc35c316b5839bb0a363e0f14bb3070138f2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Image filters</topic><topic>Image segmentation</topic><topic>Markov analysis</topic><topic>Neural networks</topic><topic>Noise levels</topic><topic>Signs and symptoms</topic><toplevel>online_resources</toplevel><creatorcontrib>Sartin, Maicon A</creatorcontrib><creatorcontrib>Alexandre C R da Silva</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sartin, Maicon A</au><au>Alexandre C R da Silva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of Image Segmentation and Filtering With ANN in the Papaya Leaf</atitle><jtitle>arXiv.org</jtitle><date>2014-03-12</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Precision agriculture is area with lack of cheap technology. The refinement of the production system brings large advantages to the producer and the use of images makes the monitoring a more cheap methodology. Macronutrients monitoring can to determine the health and vulnerability of the plant in specific stages. In this paper is analyzed the method based on computational intelligence to work with image segmentation in the identification of symptoms of plant nutrient deficiency. Artificial neural networks are evaluated for image segmentation and filtering, several variations of parameters and insertion impulsive noise were evaluated too. Satisfactory results are achieved with artificial neural for segmentation same with high noise levels.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1403.3057</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2083975597
source ProQuest - Publicly Available Content Database
subjects Artificial intelligence
Artificial neural networks
Image filters
Image segmentation
Markov analysis
Neural networks
Noise levels
Signs and symptoms
title Evaluation of Image Segmentation and Filtering With ANN in the Papaya Leaf
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A25%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20Image%20Segmentation%20and%20Filtering%20With%20ANN%20in%20the%20Papaya%20Leaf&rft.jtitle=arXiv.org&rft.au=Sartin,%20Maicon%20A&rft.date=2014-03-12&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1403.3057&rft_dat=%3Cproquest%3E2083975597%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a517-37b04881b536dbc3dcfd6ad1840dc35c316b5839bb0a363e0f14bb3070138f2d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083975597&rft_id=info:pmid/&rfr_iscdi=true