Loading…
Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition
Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we s...
Saved in:
Published in: | IEEE transactions on intelligent transportation systems 2018-08, Vol.19 (8), p.2536-2547 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203 |
container_end_page | 2547 |
container_issue | 8 |
container_start_page | 2536 |
container_title | IEEE transactions on intelligent transportation systems |
container_volume | 19 |
creator | Wang, Xiong Zhang, Jinbei Tian, Xiaohua Gan, Xiaoying Guan, Yunfeng Wang, Xinbing |
description | Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms. |
doi_str_mv | 10.1109/TITS.2017.2750169 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083984193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8074777</ieee_id><sourcerecordid>2083984193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Z3LZ7GMNXgIFocbnZW-RLZptdxPEf29Ci08zczhnZvgIuQW6AqD8oW3a9xVSYCtkBYWSn5EFFEWV0mk4n3vMU04LekmuYtxNal4ALEhTB_9jou2j6z_TRxmtSWrfz8IYk6bXzth-SLZ278OQdD4kWy9N0gbZdU4na30YXXSD8_01uejkV7Q3p7okH89Pbf2abt5emnq9STXybEixUExpjpmSupze0NyYsgNkwAxH4EwZ1BZQK8UNMCW5RbScYykrKJFmS3J_3LsP_jDaOIidH0M_nRRIq4xXOfBscsHRpYOPMdhO7IP7luFXABUzMTETEzMxcSI2Ze6OGWet_fdXlOWMsewP5ZJnAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083984193</pqid></control><display><type>article</type><title>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Xiong ; Zhang, Jinbei ; Tian, Xiaohua ; Gan, Xiaoying ; Guan, Yunfeng ; Wang, Xinbing</creator><creatorcontrib>Wang, Xiong ; Zhang, Jinbei ; Tian, Xiaohua ; Gan, Xiaoying ; Guan, Yunfeng ; Wang, Xinbing</creatorcontrib><description>Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2750169</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; consensus traffic report ; Crowdsensing ; Drivers ; incentive ; inference ; Inference algorithms ; Mobile communication ; Reliability ; Reliability analysis ; Reliability aspects ; Roads ; Sensors ; Smart phones ; Traffic ; Traffic information ; Wireless sensor networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-08, Vol.19 (8), p.2536-2547</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</citedby><cites>FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</cites><orcidid>0000-0001-5200-1409 ; 0000-0002-0357-8356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8074777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Wang, Xiong</creatorcontrib><creatorcontrib>Zhang, Jinbei</creatorcontrib><creatorcontrib>Tian, Xiaohua</creatorcontrib><creatorcontrib>Gan, Xiaoying</creatorcontrib><creatorcontrib>Guan, Yunfeng</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><title>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.</description><subject>Computer simulation</subject><subject>consensus traffic report</subject><subject>Crowdsensing</subject><subject>Drivers</subject><subject>incentive</subject><subject>inference</subject><subject>Inference algorithms</subject><subject>Mobile communication</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Roads</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Traffic</subject><subject>Traffic information</subject><subject>Wireless sensor networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Z3LZ7GMNXgIFocbnZW-RLZptdxPEf29Ci08zczhnZvgIuQW6AqD8oW3a9xVSYCtkBYWSn5EFFEWV0mk4n3vMU04LekmuYtxNal4ALEhTB_9jou2j6z_TRxmtSWrfz8IYk6bXzth-SLZ278OQdD4kWy9N0gbZdU4na30YXXSD8_01uejkV7Q3p7okH89Pbf2abt5emnq9STXybEixUExpjpmSupze0NyYsgNkwAxH4EwZ1BZQK8UNMCW5RbScYykrKJFmS3J_3LsP_jDaOIidH0M_nRRIq4xXOfBscsHRpYOPMdhO7IP7luFXABUzMTETEzMxcSI2Ze6OGWet_fdXlOWMsewP5ZJnAg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Wang, Xiong</creator><creator>Zhang, Jinbei</creator><creator>Tian, Xiaohua</creator><creator>Gan, Xiaoying</creator><creator>Guan, Yunfeng</creator><creator>Wang, Xinbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5200-1409</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid></search><sort><creationdate>20180801</creationdate><title>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</title><author>Wang, Xiong ; Zhang, Jinbei ; Tian, Xiaohua ; Gan, Xiaoying ; Guan, Yunfeng ; Wang, Xinbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>consensus traffic report</topic><topic>Crowdsensing</topic><topic>Drivers</topic><topic>incentive</topic><topic>inference</topic><topic>Inference algorithms</topic><topic>Mobile communication</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Roads</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Traffic</topic><topic>Traffic information</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiong</creatorcontrib><creatorcontrib>Zhang, Jinbei</creatorcontrib><creatorcontrib>Tian, Xiaohua</creatorcontrib><creatorcontrib>Gan, Xiaoying</creatorcontrib><creatorcontrib>Guan, Yunfeng</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiong</au><au>Zhang, Jinbei</au><au>Tian, Xiaohua</au><au>Gan, Xiaoying</au><au>Guan, Yunfeng</au><au>Wang, Xinbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>19</volume><issue>8</issue><spage>2536</spage><epage>2547</epage><pages>2536-2547</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2017.2750169</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5200-1409</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1524-9050 |
ispartof | IEEE transactions on intelligent transportation systems, 2018-08, Vol.19 (8), p.2536-2547 |
issn | 1524-9050 1558-0016 |
language | eng |
recordid | cdi_proquest_journals_2083984193 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computer simulation consensus traffic report Crowdsensing Drivers incentive inference Inference algorithms Mobile communication Reliability Reliability analysis Reliability aspects Roads Sensors Smart phones Traffic Traffic information Wireless sensor networks |
title | Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowdsensing-Based%20Consensus%20Incident%20Report%20for%20Road%20Traffic%20Acquisition&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Xiong&rft.date=2018-08-01&rft.volume=19&rft.issue=8&rft.spage=2536&rft.epage=2547&rft.pages=2536-2547&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2750169&rft_dat=%3Cproquest_cross%3E2083984193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083984193&rft_id=info:pmid/&rft_ieee_id=8074777&rfr_iscdi=true |