Loading…

Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition

Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we s...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on intelligent transportation systems 2018-08, Vol.19 (8), p.2536-2547
Main Authors: Wang, Xiong, Zhang, Jinbei, Tian, Xiaohua, Gan, Xiaoying, Guan, Yunfeng, Wang, Xinbing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203
cites cdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203
container_end_page 2547
container_issue 8
container_start_page 2536
container_title IEEE transactions on intelligent transportation systems
container_volume 19
creator Wang, Xiong
Zhang, Jinbei
Tian, Xiaohua
Gan, Xiaoying
Guan, Yunfeng
Wang, Xinbing
description Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.
doi_str_mv 10.1109/TITS.2017.2750169
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2083984193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8074777</ieee_id><sourcerecordid>2083984193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Z3LZ7GMNXgIFocbnZW-RLZptdxPEf29Ci08zczhnZvgIuQW6AqD8oW3a9xVSYCtkBYWSn5EFFEWV0mk4n3vMU04LekmuYtxNal4ALEhTB_9jou2j6z_TRxmtSWrfz8IYk6bXzth-SLZ278OQdD4kWy9N0gbZdU4na30YXXSD8_01uejkV7Q3p7okH89Pbf2abt5emnq9STXybEixUExpjpmSupze0NyYsgNkwAxH4EwZ1BZQK8UNMCW5RbScYykrKJFmS3J_3LsP_jDaOIidH0M_nRRIq4xXOfBscsHRpYOPMdhO7IP7luFXABUzMTETEzMxcSI2Ze6OGWet_fdXlOWMsewP5ZJnAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083984193</pqid></control><display><type>article</type><title>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Xiong ; Zhang, Jinbei ; Tian, Xiaohua ; Gan, Xiaoying ; Guan, Yunfeng ; Wang, Xinbing</creator><creatorcontrib>Wang, Xiong ; Zhang, Jinbei ; Tian, Xiaohua ; Gan, Xiaoying ; Guan, Yunfeng ; Wang, Xinbing</creatorcontrib><description>Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2017.2750169</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; consensus traffic report ; Crowdsensing ; Drivers ; incentive ; inference ; Inference algorithms ; Mobile communication ; Reliability ; Reliability analysis ; Reliability aspects ; Roads ; Sensors ; Smart phones ; Traffic ; Traffic information ; Wireless sensor networks</subject><ispartof>IEEE transactions on intelligent transportation systems, 2018-08, Vol.19 (8), p.2536-2547</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</citedby><cites>FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</cites><orcidid>0000-0001-5200-1409 ; 0000-0002-0357-8356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8074777$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,54775</link.rule.ids></links><search><creatorcontrib>Wang, Xiong</creatorcontrib><creatorcontrib>Zhang, Jinbei</creatorcontrib><creatorcontrib>Tian, Xiaohua</creatorcontrib><creatorcontrib>Gan, Xiaoying</creatorcontrib><creatorcontrib>Guan, Yunfeng</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><title>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.</description><subject>Computer simulation</subject><subject>consensus traffic report</subject><subject>Crowdsensing</subject><subject>Drivers</subject><subject>incentive</subject><subject>inference</subject><subject>Inference algorithms</subject><subject>Mobile communication</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Reliability aspects</subject><subject>Roads</subject><subject>Sensors</subject><subject>Smart phones</subject><subject>Traffic</subject><subject>Traffic information</subject><subject>Wireless sensor networks</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8Dl1Z3LZ7GMNXgIFocbnZW-RLZptdxPEf29Ci08zczhnZvgIuQW6AqD8oW3a9xVSYCtkBYWSn5EFFEWV0mk4n3vMU04LekmuYtxNal4ALEhTB_9jou2j6z_TRxmtSWrfz8IYk6bXzth-SLZ278OQdD4kWy9N0gbZdU4na30YXXSD8_01uejkV7Q3p7okH89Pbf2abt5emnq9STXybEixUExpjpmSupze0NyYsgNkwAxH4EwZ1BZQK8UNMCW5RbScYykrKJFmS3J_3LsP_jDaOIidH0M_nRRIq4xXOfBscsHRpYOPMdhO7IP7luFXABUzMTETEzMxcSI2Ze6OGWet_fdXlOWMsewP5ZJnAg</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Wang, Xiong</creator><creator>Zhang, Jinbei</creator><creator>Tian, Xiaohua</creator><creator>Gan, Xiaoying</creator><creator>Guan, Yunfeng</creator><creator>Wang, Xinbing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5200-1409</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid></search><sort><creationdate>20180801</creationdate><title>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</title><author>Wang, Xiong ; Zhang, Jinbei ; Tian, Xiaohua ; Gan, Xiaoying ; Guan, Yunfeng ; Wang, Xinbing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer simulation</topic><topic>consensus traffic report</topic><topic>Crowdsensing</topic><topic>Drivers</topic><topic>incentive</topic><topic>inference</topic><topic>Inference algorithms</topic><topic>Mobile communication</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Reliability aspects</topic><topic>Roads</topic><topic>Sensors</topic><topic>Smart phones</topic><topic>Traffic</topic><topic>Traffic information</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Xiong</creatorcontrib><creatorcontrib>Zhang, Jinbei</creatorcontrib><creatorcontrib>Tian, Xiaohua</creatorcontrib><creatorcontrib>Gan, Xiaoying</creatorcontrib><creatorcontrib>Guan, Yunfeng</creatorcontrib><creatorcontrib>Wang, Xinbing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Xiong</au><au>Zhang, Jinbei</au><au>Tian, Xiaohua</au><au>Gan, Xiaoying</au><au>Guan, Yunfeng</au><au>Wang, Xinbing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2018-08-01</date><risdate>2018</risdate><volume>19</volume><issue>8</issue><spage>2536</spage><epage>2547</epage><pages>2536-2547</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>Real-time road traffic information brings great convenience for drivers. Various road information acquisitions are enabled by recent mobile crowdsensing paradigm. However, the accuracy of information can not be guaranteed, and appropriate incentive mechanism is still unavailable. In this paper, we study the problem of extracting the actual road traffic information according to the reports from an amount of unknown contributors. To obtain the accurate road traffic result with high probability, we establish a reputation system to evaluate the reliability of each contributor, which takes both location and time deviation factors into account. We also design an incentive mechanism to elicit the truthful report of each qualified contributor. Furthermore, we improve the existing answer inference methods and derive the correct result in an efficient way. Extensive simulations are carried out to evaluate the proposed algorithms.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2017.2750169</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5200-1409</orcidid><orcidid>https://orcid.org/0000-0002-0357-8356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2018-08, Vol.19 (8), p.2536-2547
issn 1524-9050
1558-0016
language eng
recordid cdi_proquest_journals_2083984193
source IEEE Electronic Library (IEL) Journals
subjects Computer simulation
consensus traffic report
Crowdsensing
Drivers
incentive
inference
Inference algorithms
Mobile communication
Reliability
Reliability analysis
Reliability aspects
Roads
Sensors
Smart phones
Traffic
Traffic information
Wireless sensor networks
title Crowdsensing-Based Consensus Incident Report for Road Traffic Acquisition
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A04%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crowdsensing-Based%20Consensus%20Incident%20Report%20for%20Road%20Traffic%20Acquisition&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Wang,%20Xiong&rft.date=2018-08-01&rft.volume=19&rft.issue=8&rft.spage=2536&rft.epage=2547&rft.pages=2536-2547&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2017.2750169&rft_dat=%3Cproquest_cross%3E2083984193%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-25b7bc923bac6001c9dd6f12717d92197bd2ce12cbb9d17ba9e22e9926a816203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083984193&rft_id=info:pmid/&rft_ieee_id=8074777&rfr_iscdi=true