Loading…
Scalable and Anonymous Modeling of Large Populations of Flexible Appliances
To respond to volatility and congestion in the power grid, demand response (DR) mechanisms allow for shaping the load compared to a base load profile. When tapping on a large population of heterogeneous appliances as a DR resource, the challenge is in modeling the dimensions available for control. S...
Saved in:
Published in: | arXiv.org 2014-04 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Alizadeh, Mahnoosh Scaglione, Anna Applebaum, Andy Kesidis, George Levitt, Karl |
description | To respond to volatility and congestion in the power grid, demand response (DR) mechanisms allow for shaping the load compared to a base load profile. When tapping on a large population of heterogeneous appliances as a DR resource, the challenge is in modeling the dimensions available for control. Such models need to strike the right balance between accuracy of the model and tractability. The goal of this paper is to provide a medium-grained stochastic hybrid model to represent a population of appliances that belong to two classes: deferrable or thermostatically controlled loads. We preserve quantized information regarding individual load constraints, while discarding information about the identity of appliance owners. The advantages of our proposed population model are 1) it allows us to model and control load in a scalable fashion, useful for ex-ante planning by an aggregator or for real-time load control; 2) it allows for the preservation of the privacy of end-use customers that own submetered or directly controlled appliances. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2083990432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2083990432</sourcerecordid><originalsourceid>FETCH-proquest_journals_20839904323</originalsourceid><addsrcrecordid>eNqNi9EKgjAYRkcQJOU7DLoW1qallxJJUEGQ97J0ymT9_3IO6u1L6AG6-uCc881IwIXYRGnM-YKEzvWMMb7d8SQRATndamnk3SgqoaE5ILwf6B29YKOMho5iS89y6BS9ovVGjhrBTbAw6qWnX26t0RJq5VZk3krjVPjbJVkXh3J_jOyAT6_cWPXoB_iqirNUZBmLBRf_VR_lszzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2083990432</pqid></control><display><type>article</type><title>Scalable and Anonymous Modeling of Large Populations of Flexible Appliances</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Alizadeh, Mahnoosh ; Scaglione, Anna ; Applebaum, Andy ; Kesidis, George ; Levitt, Karl</creator><creatorcontrib>Alizadeh, Mahnoosh ; Scaglione, Anna ; Applebaum, Andy ; Kesidis, George ; Levitt, Karl</creatorcontrib><description>To respond to volatility and congestion in the power grid, demand response (DR) mechanisms allow for shaping the load compared to a base load profile. When tapping on a large population of heterogeneous appliances as a DR resource, the challenge is in modeling the dimensions available for control. Such models need to strike the right balance between accuracy of the model and tractability. The goal of this paper is to provide a medium-grained stochastic hybrid model to represent a population of appliances that belong to two classes: deferrable or thermostatically controlled loads. We preserve quantized information regarding individual load constraints, while discarding information about the identity of appliance owners. The advantages of our proposed population model are 1) it allows us to model and control load in a scalable fashion, useful for ex-ante planning by an aggregator or for real-time load control; 2) it allows for the preservation of the privacy of end-use customers that own submetered or directly controlled appliances.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Load ; Model accuracy ; Modelling ; Volatility</subject><ispartof>arXiv.org, 2014-04</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2083990432?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Alizadeh, Mahnoosh</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Applebaum, Andy</creatorcontrib><creatorcontrib>Kesidis, George</creatorcontrib><creatorcontrib>Levitt, Karl</creatorcontrib><title>Scalable and Anonymous Modeling of Large Populations of Flexible Appliances</title><title>arXiv.org</title><description>To respond to volatility and congestion in the power grid, demand response (DR) mechanisms allow for shaping the load compared to a base load profile. When tapping on a large population of heterogeneous appliances as a DR resource, the challenge is in modeling the dimensions available for control. Such models need to strike the right balance between accuracy of the model and tractability. The goal of this paper is to provide a medium-grained stochastic hybrid model to represent a population of appliances that belong to two classes: deferrable or thermostatically controlled loads. We preserve quantized information regarding individual load constraints, while discarding information about the identity of appliance owners. The advantages of our proposed population model are 1) it allows us to model and control load in a scalable fashion, useful for ex-ante planning by an aggregator or for real-time load control; 2) it allows for the preservation of the privacy of end-use customers that own submetered or directly controlled appliances.</description><subject>Load</subject><subject>Model accuracy</subject><subject>Modelling</subject><subject>Volatility</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi9EKgjAYRkcQJOU7DLoW1qallxJJUEGQ97J0ymT9_3IO6u1L6AG6-uCc881IwIXYRGnM-YKEzvWMMb7d8SQRATndamnk3SgqoaE5ILwf6B29YKOMho5iS89y6BS9ovVGjhrBTbAw6qWnX26t0RJq5VZk3krjVPjbJVkXh3J_jOyAT6_cWPXoB_iqirNUZBmLBRf_VR_lszzg</recordid><startdate>20140407</startdate><enddate>20140407</enddate><creator>Alizadeh, Mahnoosh</creator><creator>Scaglione, Anna</creator><creator>Applebaum, Andy</creator><creator>Kesidis, George</creator><creator>Levitt, Karl</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140407</creationdate><title>Scalable and Anonymous Modeling of Large Populations of Flexible Appliances</title><author>Alizadeh, Mahnoosh ; Scaglione, Anna ; Applebaum, Andy ; Kesidis, George ; Levitt, Karl</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20839904323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Load</topic><topic>Model accuracy</topic><topic>Modelling</topic><topic>Volatility</topic><toplevel>online_resources</toplevel><creatorcontrib>Alizadeh, Mahnoosh</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Applebaum, Andy</creatorcontrib><creatorcontrib>Kesidis, George</creatorcontrib><creatorcontrib>Levitt, Karl</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alizadeh, Mahnoosh</au><au>Scaglione, Anna</au><au>Applebaum, Andy</au><au>Kesidis, George</au><au>Levitt, Karl</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Scalable and Anonymous Modeling of Large Populations of Flexible Appliances</atitle><jtitle>arXiv.org</jtitle><date>2014-04-07</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>To respond to volatility and congestion in the power grid, demand response (DR) mechanisms allow for shaping the load compared to a base load profile. When tapping on a large population of heterogeneous appliances as a DR resource, the challenge is in modeling the dimensions available for control. Such models need to strike the right balance between accuracy of the model and tractability. The goal of this paper is to provide a medium-grained stochastic hybrid model to represent a population of appliances that belong to two classes: deferrable or thermostatically controlled loads. We preserve quantized information regarding individual load constraints, while discarding information about the identity of appliance owners. The advantages of our proposed population model are 1) it allows us to model and control load in a scalable fashion, useful for ex-ante planning by an aggregator or for real-time load control; 2) it allows for the preservation of the privacy of end-use customers that own submetered or directly controlled appliances.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2083990432 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Load Model accuracy Modelling Volatility |
title | Scalable and Anonymous Modeling of Large Populations of Flexible Appliances |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A51%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Scalable%20and%20Anonymous%20Modeling%20of%20Large%20Populations%20of%20Flexible%20Appliances&rft.jtitle=arXiv.org&rft.au=Alizadeh,%20Mahnoosh&rft.date=2014-04-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2083990432%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20839904323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2083990432&rft_id=info:pmid/&rfr_iscdi=true |