Loading…
Site-dependent charge transfer at the Pt(111)-ZnPc interface and the effect of iodine
The electronic structure of ZnPc, from sub-monolayers to thick films, on bare and iodated Pt(111) is studied by means of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM). Our results suggest that at low coverage ZnPc lies almost para...
Saved in:
Published in: | arXiv.org 2014-04 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The electronic structure of ZnPc, from sub-monolayers to thick films, on bare and iodated Pt(111) is studied by means of X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS) and scanning tunneling microscopy (STM). Our results suggest that at low coverage ZnPc lies almost parallel to the Pt(111) substrate, in a non-planar configuration induced by Zn-Pt attraction, leading to an inhomogeneous charge distribution within the molecule and charge transfer to the molecule. ZnPc does not form a complete monolayer on the Pt surface, due to a surface-mediated intermolecular repulsion. At higher coverage ZnPc adopts a tilted geometry, due to a reduced molecule-substrate interaction. Our photoemission results illustrate that ZnPc is practically decoupled from Pt, already from the second layer. Pre-deposition of iodine on Pt hinders the Zn-Pt attraction, leading to a non-distorted first layer ZnPc in contact with Pt(111)-I \(\left(\sqrt{3}\times\sqrt{3}\right)\) or Pt(111)-I \(\left(\sqrt{7}\times\sqrt{7}\right)\), and a more homogeneous charge distribution and charge transfer at the interface. On increased ZnPc thickness iodine is dissolved in the organic film where it acts as an electron acceptor dopant. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1404.7832 |