Loading…
Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys
Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the sur...
Saved in:
Published in: | arXiv.org 2015-09 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Masters, Daniel Capak, Peter Stern, Daniel Ilbert, Olivier Salvato, Mara Schmidt, Samuel Longo, Giuseppe Rhodes, Jason Paltani, Stephane Mobasher, Bahram Hoekstra, Henk Hildebrandt, Hendrik Coupon, Jean Steinhardt, Charles Speagle, Josh Faisst, Andreas Kalinich, Adam Brodwin, Mark Brescia, Massimo Cavuoti, Stefano |
description | Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color-redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST. |
doi_str_mv | 10.48550/arxiv.1509.03318 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084027947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084027947</sourcerecordid><originalsourceid>FETCH-LOGICAL-a527-c439bda5f5f195cc7f1fe25e96903cc909876d616a1e6bb4b071346755cb89e03</originalsourceid><addsrcrecordid>eNo9jU1PwjAAhhsTEwnyA7w18Tzsd1dvZlEkwWCAO-m6FkoGnW1H4N-7qPH0vIcnzwvAA0ZTVnKOnnS8-PMUc6SmiFJc3oARGViUjJA7MEnpgBAiQhLO6Qj0H7rr_GkH897CmW715Qqr0IZYrGyT9t5luLKtzj6cnuGyy_6oW_i5DzkcbY7ewH-t0q2v448J13kYdudtgi7EIZiOQ3N3hes-nu013YNbp9tkJ38cg83b66Z6LxbL2bx6WRSaE1kYRlXdaO64w4obIx12lnCrhELUGIVUKUUjsNDYirpmNZKYMiE5N3WpLKJj8Pib7WL46m3K20Po42l43BJUMkSkYpJ-A_lHXqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084027947</pqid></control><display><type>article</type><title>Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys</title><source>Publicly Available Content (ProQuest)</source><creator>Masters, Daniel ; Capak, Peter ; Stern, Daniel ; Ilbert, Olivier ; Salvato, Mara ; Schmidt, Samuel ; Longo, Giuseppe ; Rhodes, Jason ; Paltani, Stephane ; Mobasher, Bahram ; Hoekstra, Henk ; Hildebrandt, Hendrik ; Coupon, Jean ; Steinhardt, Charles ; Speagle, Josh ; Faisst, Andreas ; Kalinich, Adam ; Brodwin, Mark ; Brescia, Massimo ; Cavuoti, Stefano</creator><creatorcontrib>Masters, Daniel ; Capak, Peter ; Stern, Daniel ; Ilbert, Olivier ; Salvato, Mara ; Schmidt, Samuel ; Longo, Giuseppe ; Rhodes, Jason ; Paltani, Stephane ; Mobasher, Bahram ; Hoekstra, Henk ; Hildebrandt, Hendrik ; Coupon, Jean ; Steinhardt, Charles ; Speagle, Josh ; Faisst, Andreas ; Kalinich, Adam ; Brodwin, Mark ; Brescia, Massimo ; Cavuoti, Stefano</creatorcontrib><description>Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color-redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1509.03318</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astrophysics ; Calibration ; Color ; Cosmology ; Empirical analysis ; Galaxies ; Galaxy distribution ; Mapping ; Photometry ; Red shift ; Sampling ; Self organizing maps ; Spectroscopy ; Stars & galaxies ; Training</subject><ispartof>arXiv.org, 2015-09</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084027947?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Masters, Daniel</creatorcontrib><creatorcontrib>Capak, Peter</creatorcontrib><creatorcontrib>Stern, Daniel</creatorcontrib><creatorcontrib>Ilbert, Olivier</creatorcontrib><creatorcontrib>Salvato, Mara</creatorcontrib><creatorcontrib>Schmidt, Samuel</creatorcontrib><creatorcontrib>Longo, Giuseppe</creatorcontrib><creatorcontrib>Rhodes, Jason</creatorcontrib><creatorcontrib>Paltani, Stephane</creatorcontrib><creatorcontrib>Mobasher, Bahram</creatorcontrib><creatorcontrib>Hoekstra, Henk</creatorcontrib><creatorcontrib>Hildebrandt, Hendrik</creatorcontrib><creatorcontrib>Coupon, Jean</creatorcontrib><creatorcontrib>Steinhardt, Charles</creatorcontrib><creatorcontrib>Speagle, Josh</creatorcontrib><creatorcontrib>Faisst, Andreas</creatorcontrib><creatorcontrib>Kalinich, Adam</creatorcontrib><creatorcontrib>Brodwin, Mark</creatorcontrib><creatorcontrib>Brescia, Massimo</creatorcontrib><creatorcontrib>Cavuoti, Stefano</creatorcontrib><title>Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys</title><title>arXiv.org</title><description>Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color-redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.</description><subject>Astrophysics</subject><subject>Calibration</subject><subject>Color</subject><subject>Cosmology</subject><subject>Empirical analysis</subject><subject>Galaxies</subject><subject>Galaxy distribution</subject><subject>Mapping</subject><subject>Photometry</subject><subject>Red shift</subject><subject>Sampling</subject><subject>Self organizing maps</subject><subject>Spectroscopy</subject><subject>Stars & galaxies</subject><subject>Training</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9jU1PwjAAhhsTEwnyA7w18Tzsd1dvZlEkwWCAO-m6FkoGnW1H4N-7qPH0vIcnzwvAA0ZTVnKOnnS8-PMUc6SmiFJc3oARGViUjJA7MEnpgBAiQhLO6Qj0H7rr_GkH897CmW715Qqr0IZYrGyT9t5luLKtzj6cnuGyy_6oW_i5DzkcbY7ewH-t0q2v448J13kYdudtgi7EIZiOQ3N3hes-nu013YNbp9tkJ38cg83b66Z6LxbL2bx6WRSaE1kYRlXdaO64w4obIx12lnCrhELUGIVUKUUjsNDYirpmNZKYMiE5N3WpLKJj8Pib7WL46m3K20Po42l43BJUMkSkYpJ-A_lHXqs</recordid><startdate>20150910</startdate><enddate>20150910</enddate><creator>Masters, Daniel</creator><creator>Capak, Peter</creator><creator>Stern, Daniel</creator><creator>Ilbert, Olivier</creator><creator>Salvato, Mara</creator><creator>Schmidt, Samuel</creator><creator>Longo, Giuseppe</creator><creator>Rhodes, Jason</creator><creator>Paltani, Stephane</creator><creator>Mobasher, Bahram</creator><creator>Hoekstra, Henk</creator><creator>Hildebrandt, Hendrik</creator><creator>Coupon, Jean</creator><creator>Steinhardt, Charles</creator><creator>Speagle, Josh</creator><creator>Faisst, Andreas</creator><creator>Kalinich, Adam</creator><creator>Brodwin, Mark</creator><creator>Brescia, Massimo</creator><creator>Cavuoti, Stefano</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150910</creationdate><title>Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys</title><author>Masters, Daniel ; Capak, Peter ; Stern, Daniel ; Ilbert, Olivier ; Salvato, Mara ; Schmidt, Samuel ; Longo, Giuseppe ; Rhodes, Jason ; Paltani, Stephane ; Mobasher, Bahram ; Hoekstra, Henk ; Hildebrandt, Hendrik ; Coupon, Jean ; Steinhardt, Charles ; Speagle, Josh ; Faisst, Andreas ; Kalinich, Adam ; Brodwin, Mark ; Brescia, Massimo ; Cavuoti, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a527-c439bda5f5f195cc7f1fe25e96903cc909876d616a1e6bb4b071346755cb89e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astrophysics</topic><topic>Calibration</topic><topic>Color</topic><topic>Cosmology</topic><topic>Empirical analysis</topic><topic>Galaxies</topic><topic>Galaxy distribution</topic><topic>Mapping</topic><topic>Photometry</topic><topic>Red shift</topic><topic>Sampling</topic><topic>Self organizing maps</topic><topic>Spectroscopy</topic><topic>Stars & galaxies</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Masters, Daniel</creatorcontrib><creatorcontrib>Capak, Peter</creatorcontrib><creatorcontrib>Stern, Daniel</creatorcontrib><creatorcontrib>Ilbert, Olivier</creatorcontrib><creatorcontrib>Salvato, Mara</creatorcontrib><creatorcontrib>Schmidt, Samuel</creatorcontrib><creatorcontrib>Longo, Giuseppe</creatorcontrib><creatorcontrib>Rhodes, Jason</creatorcontrib><creatorcontrib>Paltani, Stephane</creatorcontrib><creatorcontrib>Mobasher, Bahram</creatorcontrib><creatorcontrib>Hoekstra, Henk</creatorcontrib><creatorcontrib>Hildebrandt, Hendrik</creatorcontrib><creatorcontrib>Coupon, Jean</creatorcontrib><creatorcontrib>Steinhardt, Charles</creatorcontrib><creatorcontrib>Speagle, Josh</creatorcontrib><creatorcontrib>Faisst, Andreas</creatorcontrib><creatorcontrib>Kalinich, Adam</creatorcontrib><creatorcontrib>Brodwin, Mark</creatorcontrib><creatorcontrib>Brescia, Massimo</creatorcontrib><creatorcontrib>Cavuoti, Stefano</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masters, Daniel</au><au>Capak, Peter</au><au>Stern, Daniel</au><au>Ilbert, Olivier</au><au>Salvato, Mara</au><au>Schmidt, Samuel</au><au>Longo, Giuseppe</au><au>Rhodes, Jason</au><au>Paltani, Stephane</au><au>Mobasher, Bahram</au><au>Hoekstra, Henk</au><au>Hildebrandt, Hendrik</au><au>Coupon, Jean</au><au>Steinhardt, Charles</au><au>Speagle, Josh</au><au>Faisst, Andreas</au><au>Kalinich, Adam</au><au>Brodwin, Mark</au><au>Brescia, Massimo</au><au>Cavuoti, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys</atitle><jtitle>arXiv.org</jtitle><date>2015-09-10</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>Calibrating the photometric redshifts of >10^9 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where - in galaxy color space - redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color-redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1509.03318</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084027947 |
source | Publicly Available Content (ProQuest) |
subjects | Astrophysics Calibration Color Cosmology Empirical analysis Galaxies Galaxy distribution Mapping Photometry Red shift Sampling Self organizing maps Spectroscopy Stars & galaxies Training |
title | Mapping the Galaxy Color-Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20the%20Galaxy%20Color-Redshift%20Relation:%20Optimal%20Photometric%20Redshift%20Calibration%20Strategies%20for%20Cosmology%20Surveys&rft.jtitle=arXiv.org&rft.au=Masters,%20Daniel&rft.date=2015-09-10&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1509.03318&rft_dat=%3Cproquest%3E2084027947%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a527-c439bda5f5f195cc7f1fe25e96903cc909876d616a1e6bb4b071346755cb89e03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084027947&rft_id=info:pmid/&rfr_iscdi=true |