Loading…
Emergence of chaotic scattering in ultracold Er and Dy
We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and e...
Saved in:
Published in: | arXiv.org 2015-10 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Maier, T Kadau, H Schmitt, M Wenzel, M Ferrier-Barbut, I Pfau, T Frisch, A Baier, S Aikawa, K Chomaz, L Mark, M J Ferlaino, F Makrides, C Tiesinga, E Petrov, A Kotochigova, S |
description | We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate. |
doi_str_mv | 10.48550/arxiv.1506.05221 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084104689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084104689</sourcerecordid><originalsourceid>FETCH-LOGICAL-a529-ac1c49403799cc0320921a70a87a6dc52b11115a2627a90cba462334aff014ff3</originalsourceid><addsrcrecordid>eNotjktLw0AURgdBsNT-AHcDrhPv3Hkks5QaH1Bw0325vZmpKXGik0T03xvQb3N253xC3CgoTW0t3FH-7r5KZcGVYBHVhVih1qqoDeKV2IzjGQDQVWitXgnXvId8ComDHKLkNxqmjuXINE0hd-kkuyTnfsrEQ9_KJktKrXz4uRaXkfoxbP65FvvHZr99LnavTy_b-11BFn1BrNh4A7rynhk0gkdFFVBdkWvZ4lEts4QOK_LARzJu-WooRlAmRr0Wt3_ajzx8zmGcDudhzmkpHhBqo8C42utfYURFhw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084104689</pqid></control><display><type>article</type><title>Emergence of chaotic scattering in ultracold Er and Dy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Maier, T ; Kadau, H ; Schmitt, M ; Wenzel, M ; Ferrier-Barbut, I ; Pfau, T ; Frisch, A ; Baier, S ; Aikawa, K ; Chomaz, L ; Mark, M J ; Ferlaino, F ; Makrides, C ; Tiesinga, E ; Petrov, A ; Kotochigova, S</creator><creatorcontrib>Maier, T ; Kadau, H ; Schmitt, M ; Wenzel, M ; Ferrier-Barbut, I ; Pfau, T ; Frisch, A ; Baier, S ; Aikawa, K ; Chomaz, L ; Mark, M J ; Ferlaino, F ; Makrides, C ; Tiesinga, E ; Petrov, A ; Kotochigova, S</creatorcontrib><description>We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1506.05221</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Computer simulation ; Coupling (molecular) ; Dependence ; Dysprosium ; Erbium ; Magnetic fields ; Magnetic properties ; Magnetic resonance ; Scattering</subject><ispartof>arXiv.org, 2015-10</ispartof><rights>2015. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084104689?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Maier, T</creatorcontrib><creatorcontrib>Kadau, H</creatorcontrib><creatorcontrib>Schmitt, M</creatorcontrib><creatorcontrib>Wenzel, M</creatorcontrib><creatorcontrib>Ferrier-Barbut, I</creatorcontrib><creatorcontrib>Pfau, T</creatorcontrib><creatorcontrib>Frisch, A</creatorcontrib><creatorcontrib>Baier, S</creatorcontrib><creatorcontrib>Aikawa, K</creatorcontrib><creatorcontrib>Chomaz, L</creatorcontrib><creatorcontrib>Mark, M J</creatorcontrib><creatorcontrib>Ferlaino, F</creatorcontrib><creatorcontrib>Makrides, C</creatorcontrib><creatorcontrib>Tiesinga, E</creatorcontrib><creatorcontrib>Petrov, A</creatorcontrib><creatorcontrib>Kotochigova, S</creatorcontrib><title>Emergence of chaotic scattering in ultracold Er and Dy</title><title>arXiv.org</title><description>We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.</description><subject>Anisotropy</subject><subject>Computer simulation</subject><subject>Coupling (molecular)</subject><subject>Dependence</subject><subject>Dysprosium</subject><subject>Erbium</subject><subject>Magnetic fields</subject><subject>Magnetic properties</subject><subject>Magnetic resonance</subject><subject>Scattering</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLw0AURgdBsNT-AHcDrhPv3Hkks5QaH1Bw0325vZmpKXGik0T03xvQb3N253xC3CgoTW0t3FH-7r5KZcGVYBHVhVih1qqoDeKV2IzjGQDQVWitXgnXvId8ComDHKLkNxqmjuXINE0hd-kkuyTnfsrEQ9_KJktKrXz4uRaXkfoxbP65FvvHZr99LnavTy_b-11BFn1BrNh4A7rynhk0gkdFFVBdkWvZ4lEts4QOK_LARzJu-WooRlAmRr0Wt3_ajzx8zmGcDudhzmkpHhBqo8C42utfYURFhw</recordid><startdate>20151008</startdate><enddate>20151008</enddate><creator>Maier, T</creator><creator>Kadau, H</creator><creator>Schmitt, M</creator><creator>Wenzel, M</creator><creator>Ferrier-Barbut, I</creator><creator>Pfau, T</creator><creator>Frisch, A</creator><creator>Baier, S</creator><creator>Aikawa, K</creator><creator>Chomaz, L</creator><creator>Mark, M J</creator><creator>Ferlaino, F</creator><creator>Makrides, C</creator><creator>Tiesinga, E</creator><creator>Petrov, A</creator><creator>Kotochigova, S</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20151008</creationdate><title>Emergence of chaotic scattering in ultracold Er and Dy</title><author>Maier, T ; Kadau, H ; Schmitt, M ; Wenzel, M ; Ferrier-Barbut, I ; Pfau, T ; Frisch, A ; Baier, S ; Aikawa, K ; Chomaz, L ; Mark, M J ; Ferlaino, F ; Makrides, C ; Tiesinga, E ; Petrov, A ; Kotochigova, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a529-ac1c49403799cc0320921a70a87a6dc52b11115a2627a90cba462334aff014ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Anisotropy</topic><topic>Computer simulation</topic><topic>Coupling (molecular)</topic><topic>Dependence</topic><topic>Dysprosium</topic><topic>Erbium</topic><topic>Magnetic fields</topic><topic>Magnetic properties</topic><topic>Magnetic resonance</topic><topic>Scattering</topic><toplevel>online_resources</toplevel><creatorcontrib>Maier, T</creatorcontrib><creatorcontrib>Kadau, H</creatorcontrib><creatorcontrib>Schmitt, M</creatorcontrib><creatorcontrib>Wenzel, M</creatorcontrib><creatorcontrib>Ferrier-Barbut, I</creatorcontrib><creatorcontrib>Pfau, T</creatorcontrib><creatorcontrib>Frisch, A</creatorcontrib><creatorcontrib>Baier, S</creatorcontrib><creatorcontrib>Aikawa, K</creatorcontrib><creatorcontrib>Chomaz, L</creatorcontrib><creatorcontrib>Mark, M J</creatorcontrib><creatorcontrib>Ferlaino, F</creatorcontrib><creatorcontrib>Makrides, C</creatorcontrib><creatorcontrib>Tiesinga, E</creatorcontrib><creatorcontrib>Petrov, A</creatorcontrib><creatorcontrib>Kotochigova, S</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, T</au><au>Kadau, H</au><au>Schmitt, M</au><au>Wenzel, M</au><au>Ferrier-Barbut, I</au><au>Pfau, T</au><au>Frisch, A</au><au>Baier, S</au><au>Aikawa, K</au><au>Chomaz, L</au><au>Mark, M J</au><au>Ferlaino, F</au><au>Makrides, C</au><au>Tiesinga, E</au><au>Petrov, A</au><au>Kotochigova, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emergence of chaotic scattering in ultracold Er and Dy</atitle><jtitle>arXiv.org</jtitle><date>2015-10-08</date><risdate>2015</risdate><eissn>2331-8422</eissn><abstract>We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly-bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizeable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant non-zero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1506.05221</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2015-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084104689 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Anisotropy Computer simulation Coupling (molecular) Dependence Dysprosium Erbium Magnetic fields Magnetic properties Magnetic resonance Scattering |
title | Emergence of chaotic scattering in ultracold Er and Dy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A40%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emergence%20of%20chaotic%20scattering%20in%20ultracold%20Er%20and%20Dy&rft.jtitle=arXiv.org&rft.au=Maier,%20T&rft.date=2015-10-08&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1506.05221&rft_dat=%3Cproquest%3E2084104689%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a529-ac1c49403799cc0320921a70a87a6dc52b11115a2627a90cba462334aff014ff3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084104689&rft_id=info:pmid/&rfr_iscdi=true |