Loading…

Wiener's theorem for positive definite functions on hypergroups

The following theorem on the circle group \(\mathbb{T}\) is due to Norbert Wiener: If \(f\in L^{1}\left( \mathbb{T}\right) \) has non-negative Fourier coefficients and is square integrable on a neighbourhood of the identity, then \(f\in L^{2}\left( \mathbb{T}\right) \). This result has been extended...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-05
Main Authors: Bloom, Walter R, Fournier, John J F, Leinert, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Bloom, Walter R
Fournier, John J F
Leinert, Michael
description The following theorem on the circle group \(\mathbb{T}\) is due to Norbert Wiener: If \(f\in L^{1}\left( \mathbb{T}\right) \) has non-negative Fourier coefficients and is square integrable on a neighbourhood of the identity, then \(f\in L^{2}\left( \mathbb{T}\right) \). This result has been extended to even exponents including \(p=\infty\), but shown to fail for all other \(p\in\left( 1,\infty\right] .\) All of this was extended further (appropriately formulated) well beyond locally compact abelian groups. In this paper we prove Wiener's theorem for even exponents for a large class of commutative hypergroups. In addition, we present examples of commutative hypergroups for which, in sharp contrast to the group case, Wiener's theorem holds for all exponents \(p\in\left[ 1,\infty\right] \). For these hypergroups and the Bessel-Kingman hypergroup with parameter \(\frac{1}{2}\) we characterise those locally integrable functions that are of positive type and square-integrable near the identity in terms of amalgam spaces.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084125705</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084125705</sourcerecordid><originalsourceid>FETCH-proquest_journals_20841257053</originalsourceid><addsrcrecordid>eNqNyjEKwjAUgOEgCBbtHQIOToU0aWw3B1E8gOBYRF9siubF9xLB2-vgAZz-4fsnotDG1FXXaD0TJfOolNLrVltrCrE5eQhAK5ZpACR4SIckI7JP_gXyCs4Hn0C6HC7JY2CJQQ7vCHQjzJEXYurOd4by17lY7nfH7aGKhM8MnPoRM4Uv9Vp1Ta1tq6z57_oARvY5YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084125705</pqid></control><display><type>article</type><title>Wiener's theorem for positive definite functions on hypergroups</title><source>Publicly Available Content Database</source><creator>Bloom, Walter R ; Fournier, John J F ; Leinert, Michael</creator><creatorcontrib>Bloom, Walter R ; Fournier, John J F ; Leinert, Michael</creatorcontrib><description>The following theorem on the circle group \(\mathbb{T}\) is due to Norbert Wiener: If \(f\in L^{1}\left( \mathbb{T}\right) \) has non-negative Fourier coefficients and is square integrable on a neighbourhood of the identity, then \(f\in L^{2}\left( \mathbb{T}\right) \). This result has been extended to even exponents including \(p=\infty\), but shown to fail for all other \(p\in\left( 1,\infty\right] .\) All of this was extended further (appropriately formulated) well beyond locally compact abelian groups. In this paper we prove Wiener's theorem for even exponents for a large class of commutative hypergroups. In addition, we present examples of commutative hypergroups for which, in sharp contrast to the group case, Wiener's theorem holds for all exponents \(p\in\left[ 1,\infty\right] \). For these hypergroups and the Bessel-Kingman hypergroup with parameter \(\frac{1}{2}\) we characterise those locally integrable functions that are of positive type and square-integrable near the identity in terms of amalgam spaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Exponents ; Group theory ; Mathematical functions ; Theorems</subject><ispartof>arXiv.org, 2014-05</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084125705?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Bloom, Walter R</creatorcontrib><creatorcontrib>Fournier, John J F</creatorcontrib><creatorcontrib>Leinert, Michael</creatorcontrib><title>Wiener's theorem for positive definite functions on hypergroups</title><title>arXiv.org</title><description>The following theorem on the circle group \(\mathbb{T}\) is due to Norbert Wiener: If \(f\in L^{1}\left( \mathbb{T}\right) \) has non-negative Fourier coefficients and is square integrable on a neighbourhood of the identity, then \(f\in L^{2}\left( \mathbb{T}\right) \). This result has been extended to even exponents including \(p=\infty\), but shown to fail for all other \(p\in\left( 1,\infty\right] .\) All of this was extended further (appropriately formulated) well beyond locally compact abelian groups. In this paper we prove Wiener's theorem for even exponents for a large class of commutative hypergroups. In addition, we present examples of commutative hypergroups for which, in sharp contrast to the group case, Wiener's theorem holds for all exponents \(p\in\left[ 1,\infty\right] \). For these hypergroups and the Bessel-Kingman hypergroup with parameter \(\frac{1}{2}\) we characterise those locally integrable functions that are of positive type and square-integrable near the identity in terms of amalgam spaces.</description><subject>Exponents</subject><subject>Group theory</subject><subject>Mathematical functions</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyjEKwjAUgOEgCBbtHQIOToU0aWw3B1E8gOBYRF9siubF9xLB2-vgAZz-4fsnotDG1FXXaD0TJfOolNLrVltrCrE5eQhAK5ZpACR4SIckI7JP_gXyCs4Hn0C6HC7JY2CJQQ7vCHQjzJEXYurOd4by17lY7nfH7aGKhM8MnPoRM4Uv9Vp1Ta1tq6z57_oARvY5YA</recordid><startdate>20140519</startdate><enddate>20140519</enddate><creator>Bloom, Walter R</creator><creator>Fournier, John J F</creator><creator>Leinert, Michael</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140519</creationdate><title>Wiener's theorem for positive definite functions on hypergroups</title><author>Bloom, Walter R ; Fournier, John J F ; Leinert, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20841257053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Exponents</topic><topic>Group theory</topic><topic>Mathematical functions</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Bloom, Walter R</creatorcontrib><creatorcontrib>Fournier, John J F</creatorcontrib><creatorcontrib>Leinert, Michael</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bloom, Walter R</au><au>Fournier, John J F</au><au>Leinert, Michael</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Wiener's theorem for positive definite functions on hypergroups</atitle><jtitle>arXiv.org</jtitle><date>2014-05-19</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The following theorem on the circle group \(\mathbb{T}\) is due to Norbert Wiener: If \(f\in L^{1}\left( \mathbb{T}\right) \) has non-negative Fourier coefficients and is square integrable on a neighbourhood of the identity, then \(f\in L^{2}\left( \mathbb{T}\right) \). This result has been extended to even exponents including \(p=\infty\), but shown to fail for all other \(p\in\left( 1,\infty\right] .\) All of this was extended further (appropriately formulated) well beyond locally compact abelian groups. In this paper we prove Wiener's theorem for even exponents for a large class of commutative hypergroups. In addition, we present examples of commutative hypergroups for which, in sharp contrast to the group case, Wiener's theorem holds for all exponents \(p\in\left[ 1,\infty\right] \). For these hypergroups and the Bessel-Kingman hypergroup with parameter \(\frac{1}{2}\) we characterise those locally integrable functions that are of positive type and square-integrable near the identity in terms of amalgam spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084125705
source Publicly Available Content Database
subjects Exponents
Group theory
Mathematical functions
Theorems
title Wiener's theorem for positive definite functions on hypergroups
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T06%3A49%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Wiener's%20theorem%20for%20positive%20definite%20functions%20on%20hypergroups&rft.jtitle=arXiv.org&rft.au=Bloom,%20Walter%20R&rft.date=2014-05-19&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084125705%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20841257053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084125705&rft_id=info:pmid/&rfr_iscdi=true