Loading…
The Electron-Ion Collider Science Case
For the first time, physicists are in the position to precisely study a fully relativistic quantum field theory: Quantum ChromoDynamics (QCD). QCD is a central element of the Standard Model and provides the theoretical framework for understanding the strong interaction. This demands a powerful new e...
Saved in:
Published in: | arXiv.org 2014-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | For the first time, physicists are in the position to precisely study a fully relativistic quantum field theory: Quantum ChromoDynamics (QCD). QCD is a central element of the Standard Model and provides the theoretical framework for understanding the strong interaction. This demands a powerful new electron microscope to probe the virtual particles of QCD. Ab initio calculations using lattice gauge theory on the world's most powerful supercomputers are essential for comparison with the data. The new accelerator and computing techniques demand aggressive development of challenging, innovative technologies. |
---|---|
ISSN: | 2331-8422 |