Loading…

Long range order in a hard disk model in statistical mechanics

We model two-dimensional crystals by a configuration space in which every admissible configuration is a hard disk configuration and a perturbed version of some triangular lattice with side length one. In this model we show that, under the uniform distribution, expected configurations in a given box...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-11
Main Author: Alexisz, Tamás Gaál
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Alexisz, Tamás Gaál
description We model two-dimensional crystals by a configuration space in which every admissible configuration is a hard disk configuration and a perturbed version of some triangular lattice with side length one. In this model we show that, under the uniform distribution, expected configurations in a given box are arbitrarily close to some triangular lattice whenever the particle density is chosen sufficiently high. This choice can be made independent of the box size.
doi_str_mv 10.48550/arxiv.1311.5523
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084131110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084131110</sourcerecordid><originalsourceid>FETCH-LOGICAL-a510-2777f19f7b57c46cc7fe8a52a2a898a214dfd5e95ab2ee95eb3fff97172c5ac73</originalsourceid><addsrcrecordid>eNotj0tLAzEURoMgWGr3LgOuZ0xucpvMRpDiCwbcdF_u5NGmTmc0mYo_3xa7OvAtzsdh7E6KWltE8UD5N_3UUklZI4K6YjNQSlZWA9ywRSl7IQQsDSCqGXtsx2HLMw3bwMfsQ-Zp4MR3lD33qXzyw-hDfx7LRFMqU3LU80NwOxqSK7fsOlJfwuLCOVu_PK9Xb1X78fq-emorQikqMMZE2UTToXF66ZyJwRICAdnGEkjto8fQIHUQTgidijE2RhpwSM6oObv_137l8fsYyrTZj8c8nB43IKw-t0qh_gA0bEnY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084131110</pqid></control><display><type>article</type><title>Long range order in a hard disk model in statistical mechanics</title><source>Publicly Available Content Database</source><creator>Alexisz, Tamás Gaál</creator><creatorcontrib>Alexisz, Tamás Gaál</creatorcontrib><description>We model two-dimensional crystals by a configuration space in which every admissible configuration is a hard disk configuration and a perturbed version of some triangular lattice with side length one. In this model we show that, under the uniform distribution, expected configurations in a given box are arbitrarily close to some triangular lattice whenever the particle density is chosen sufficiently high. This choice can be made independent of the box size.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1311.5523</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Configurations ; Disk drives ; Hard disks ; Long range order ; Particle density (concentration) ; Statistical mechanics ; Two dimensional models</subject><ispartof>arXiv.org, 2013-11</ispartof><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084131110?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Alexisz, Tamás Gaál</creatorcontrib><title>Long range order in a hard disk model in statistical mechanics</title><title>arXiv.org</title><description>We model two-dimensional crystals by a configuration space in which every admissible configuration is a hard disk configuration and a perturbed version of some triangular lattice with side length one. In this model we show that, under the uniform distribution, expected configurations in a given box are arbitrarily close to some triangular lattice whenever the particle density is chosen sufficiently high. This choice can be made independent of the box size.</description><subject>Configurations</subject><subject>Disk drives</subject><subject>Hard disks</subject><subject>Long range order</subject><subject>Particle density (concentration)</subject><subject>Statistical mechanics</subject><subject>Two dimensional models</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0tLAzEURoMgWGr3LgOuZ0xucpvMRpDiCwbcdF_u5NGmTmc0mYo_3xa7OvAtzsdh7E6KWltE8UD5N_3UUklZI4K6YjNQSlZWA9ywRSl7IQQsDSCqGXtsx2HLMw3bwMfsQ-Zp4MR3lD33qXzyw-hDfx7LRFMqU3LU80NwOxqSK7fsOlJfwuLCOVu_PK9Xb1X78fq-emorQikqMMZE2UTToXF66ZyJwRICAdnGEkjto8fQIHUQTgidijE2RhpwSM6oObv_137l8fsYyrTZj8c8nB43IKw-t0qh_gA0bEnY</recordid><startdate>20131121</startdate><enddate>20131121</enddate><creator>Alexisz, Tamás Gaál</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131121</creationdate><title>Long range order in a hard disk model in statistical mechanics</title><author>Alexisz, Tamás Gaál</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a510-2777f19f7b57c46cc7fe8a52a2a898a214dfd5e95ab2ee95eb3fff97172c5ac73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Configurations</topic><topic>Disk drives</topic><topic>Hard disks</topic><topic>Long range order</topic><topic>Particle density (concentration)</topic><topic>Statistical mechanics</topic><topic>Two dimensional models</topic><toplevel>online_resources</toplevel><creatorcontrib>Alexisz, Tamás Gaál</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexisz, Tamás Gaál</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long range order in a hard disk model in statistical mechanics</atitle><jtitle>arXiv.org</jtitle><date>2013-11-21</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We model two-dimensional crystals by a configuration space in which every admissible configuration is a hard disk configuration and a perturbed version of some triangular lattice with side length one. In this model we show that, under the uniform distribution, expected configurations in a given box are arbitrarily close to some triangular lattice whenever the particle density is chosen sufficiently high. This choice can be made independent of the box size.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1311.5523</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084131110
source Publicly Available Content Database
subjects Configurations
Disk drives
Hard disks
Long range order
Particle density (concentration)
Statistical mechanics
Two dimensional models
title Long range order in a hard disk model in statistical mechanics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A37%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20range%20order%20in%20a%20hard%20disk%20model%20in%20statistical%20mechanics&rft.jtitle=arXiv.org&rft.au=Alexisz,%20Tam%C3%A1s%20Ga%C3%A1l&rft.date=2013-11-21&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1311.5523&rft_dat=%3Cproquest%3E2084131110%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a510-2777f19f7b57c46cc7fe8a52a2a898a214dfd5e95ab2ee95eb3fff97172c5ac73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084131110&rft_id=info:pmid/&rfr_iscdi=true