Loading…
More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras
Let \(H\) be a dual quasi-Hopf algebra. In this paper we will firstly introduce all possible categories of Yetter-Drinfeld modules over \(H\), and give explicitly the monoidal and braided structure of them. Then we prove that the category \(^H_H\mathcal{YD}^{fd}\) of finite-dimensional left-left Yet...
Saved in:
Published in: | arXiv.org 2020-10 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Lu, Daowei Zhang, Xiaohui Wang, Dingguo |
description | Let \(H\) be a dual quasi-Hopf algebra. In this paper we will firstly introduce all possible categories of Yetter-Drinfeld modules over \(H\), and give explicitly the monoidal and braided structure of them. Then we prove that the category \(^H_H\mathcal{YD}^{fd}\) of finite-dimensional left-left Yetter-Drinfeld modules is rigid. Finally we will study the braided cocommunitivity of \(H_0\) in \(^H_H\mathcal{YD}\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084134829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084134829</sourcerecordid><originalsourceid>FETCH-proquest_journals_20841348293</originalsourceid><addsrcrecordid>eNqNjLsKwjAUQIMgWLT_cME5kCat1tkHdXBzcSrR3pSW0LQ3ieDf28EPcDrDOZwFS6RSGS9zKVcs9b4XQsjdXhaFStj15ghhJDcihQ49OAMPDAGJn6gbDNoGXjpg6-gD7o0ETdQWpqh9xys3GtC2xSdpv2FLo63H9Mc1217O92PF5_kU0Ye6d5GGWdVSlHmm8lIe1H_VF5rQPIU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084134829</pqid></control><display><type>article</type><title>More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras</title><source>Publicly Available Content (ProQuest)</source><creator>Lu, Daowei ; Zhang, Xiaohui ; Wang, Dingguo</creator><creatorcontrib>Lu, Daowei ; Zhang, Xiaohui ; Wang, Dingguo</creatorcontrib><description>Let \(H\) be a dual quasi-Hopf algebra. In this paper we will firstly introduce all possible categories of Yetter-Drinfeld modules over \(H\), and give explicitly the monoidal and braided structure of them. Then we prove that the category \(^H_H\mathcal{YD}^{fd}\) of finite-dimensional left-left Yetter-Drinfeld modules is rigid. Finally we will study the braided cocommunitivity of \(H_0\) in \(^H_H\mathcal{YD}\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Braiding ; Modules</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084134829?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Lu, Daowei</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Wang, Dingguo</creatorcontrib><title>More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras</title><title>arXiv.org</title><description>Let \(H\) be a dual quasi-Hopf algebra. In this paper we will firstly introduce all possible categories of Yetter-Drinfeld modules over \(H\), and give explicitly the monoidal and braided structure of them. Then we prove that the category \(^H_H\mathcal{YD}^{fd}\) of finite-dimensional left-left Yetter-Drinfeld modules is rigid. Finally we will study the braided cocommunitivity of \(H_0\) in \(^H_H\mathcal{YD}\).</description><subject>Braiding</subject><subject>Modules</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjLsKwjAUQIMgWLT_cME5kCat1tkHdXBzcSrR3pSW0LQ3ieDf28EPcDrDOZwFS6RSGS9zKVcs9b4XQsjdXhaFStj15ghhJDcihQ49OAMPDAGJn6gbDNoGXjpg6-gD7o0ETdQWpqh9xys3GtC2xSdpv2FLo63H9Mc1217O92PF5_kU0Ye6d5GGWdVSlHmm8lIe1H_VF5rQPIU</recordid><startdate>20201021</startdate><enddate>20201021</enddate><creator>Lu, Daowei</creator><creator>Zhang, Xiaohui</creator><creator>Wang, Dingguo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201021</creationdate><title>More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras</title><author>Lu, Daowei ; Zhang, Xiaohui ; Wang, Dingguo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20841348293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Braiding</topic><topic>Modules</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Daowei</creatorcontrib><creatorcontrib>Zhang, Xiaohui</creatorcontrib><creatorcontrib>Wang, Dingguo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Daowei</au><au>Zhang, Xiaohui</au><au>Wang, Dingguo</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras</atitle><jtitle>arXiv.org</jtitle><date>2020-10-21</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Let \(H\) be a dual quasi-Hopf algebra. In this paper we will firstly introduce all possible categories of Yetter-Drinfeld modules over \(H\), and give explicitly the monoidal and braided structure of them. Then we prove that the category \(^H_H\mathcal{YD}^{fd}\) of finite-dimensional left-left Yetter-Drinfeld modules is rigid. Finally we will study the braided cocommunitivity of \(H_0\) in \(^H_H\mathcal{YD}\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-10 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084134829 |
source | Publicly Available Content (ProQuest) |
subjects | Braiding Modules |
title | More properties of Yetter-Drinfeld category over dual quasi-Hopf algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A18%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=More%20properties%20of%20Yetter-Drinfeld%20category%20over%20dual%20quasi-Hopf%20algebras&rft.jtitle=arXiv.org&rft.au=Lu,%20Daowei&rft.date=2020-10-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084134829%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20841348293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084134829&rft_id=info:pmid/&rfr_iscdi=true |