Loading…
Impurity diffusion in highly-ordered intermetallic compounds studied by nuclear quadrupole interactions
Diffusion of impurity atoms depends on the sublattices occupied, active diffusion mechanisms, and jump frequencies to neighboring sites. The method of perturbed angular correlation of gamma rays (PAC) has been applied over the past decade to study impurity diffusion through measurement of nuclear qu...
Saved in:
Published in: | arXiv.org 2014-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Diffusion of impurity atoms depends on the sublattices occupied, active diffusion mechanisms, and jump frequencies to neighboring sites. The method of perturbed angular correlation of gamma rays (PAC) has been applied over the past decade to study impurity diffusion through measurement of nuclear quadrupole interactions (NQI) at nuclei of 111In/Cd probe atoms. Extensive measurements have been made on highly-ordered compounds having the L12 crystal structure, including In3R, Sn3R, Ga3R, Al3R and Pd3R phases (R= rare-earth element). Measurements in thermal equilibrium at high temperature served to determine lattice locations of 111In parent probe-atoms, through characteristic NQIs, and to measure diffusional jump-frequencies of 111Cd daughter probe-atoms, through relaxation of the NQI. This paper summarizes results of the jump-frequency measurements and relates them to the conventional diffusivity. ... A change in diffusion mechanism was proposed in 2009 to explain jump-frequency systematics for In3R phases. An alternative explanation is proposed in the present paper based on site-preferences of 111Cd daughter probes newly observed along the parallel Pd3R series. The diffusivity can be expressed as the product of a jump-frequency such as measured in these studies and a correlation factor for diffusion that depends on the diffusion mechanism. The correlation factor can be modeled for the L12 structure and diffusion sublattice of interest using a five-frequency model originally proposed for metals. Although the correlation factor is an essential parameter for the diffusion of impurities, it has never been measured. It is suggested that values of the correlation factor can be determined feasibly by combining results of jump-frequency measurements such as the present ones with diffusivity measurements made for the same host-impurity systems. |
---|---|
ISSN: | 2331-8422 |