Loading…
Contextual Semantic Parsing using Crowdsourced Spatial Descriptions
We describe a contextual parser for the Robot Commands Treebank, a new crowdsourced resource. In contrast to previous semantic parsers that select the most-probable parse, we consider the different problem of parsing using additional situational context to disambiguate between different readings of...
Saved in:
Published in: | arXiv.org 2014-05 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe a contextual parser for the Robot Commands Treebank, a new crowdsourced resource. In contrast to previous semantic parsers that select the most-probable parse, we consider the different problem of parsing using additional situational context to disambiguate between different readings of a sentence. We show that multiple semantic analyses can be searched using dynamic programming via interaction with a spatial planner, to guide the parsing process. We are able to parse sentences in near linear-time by ruling out analyses early on that are incompatible with spatial context. We report a 34% upper bound on accuracy, as our planner correctly processes spatial context for 3,394 out of 10,000 sentences. However, our parser achieves a 96.53% exact-match score for parsing within the subset of sentences recognized by the planner, compared to 82.14% for a non-contextual parser. |
---|---|
ISSN: | 2331-8422 |