Loading…
Classification of subgroups of symplectic groups over finite fields containing a transvection
In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically impri...
Saved in:
Published in: | arXiv.org 2014-05 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Arias-de-Reyna, Sara Dieulefait, Luis Wiese, Gabor |
description | In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Sp(n, l). This result is for instance useful for proving "big image" results for symplectic Galois representations. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084197843</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084197843</sourcerecordid><originalsourceid>FETCH-proquest_journals_20841978433</originalsourceid><addsrcrecordid>eNqNi9EKwiAYhSUIGrV3ELoeOHVtXY-iB-g2hpkOh-ny10Fv34q67-rjfOecBcooY2XRcEpXKAcYCCF0V9OqYhm6tFYAGG2kiMY77DWGdO2DTyN8wvM-WiWjkfgnJxWwNs5ENUPZG2DpXRSzcT0WOAbhYHpfvNugpRYWVP7lGm2Ph3N7KsbgH0lB7AafgpurjpKGl_u64Yz9t3oBvbpFGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084197843</pqid></control><display><type>article</type><title>Classification of subgroups of symplectic groups over finite fields containing a transvection</title><source>Access via ProQuest (Open Access)</source><creator>Arias-de-Reyna, Sara ; Dieulefait, Luis ; Wiese, Gabor</creator><creatorcontrib>Arias-de-Reyna, Sara ; Dieulefait, Luis ; Wiese, Gabor</creatorcontrib><description>In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Sp(n, l). This result is for instance useful for proving "big image" results for symplectic Galois representations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Conjugation ; Fields (mathematics) ; Subgroups</subject><ispartof>arXiv.org, 2014-05</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084197843?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Arias-de-Reyna, Sara</creatorcontrib><creatorcontrib>Dieulefait, Luis</creatorcontrib><creatorcontrib>Wiese, Gabor</creatorcontrib><title>Classification of subgroups of symplectic groups over finite fields containing a transvection</title><title>arXiv.org</title><description>In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Sp(n, l). This result is for instance useful for proving "big image" results for symplectic Galois representations.</description><subject>Classification</subject><subject>Conjugation</subject><subject>Fields (mathematics)</subject><subject>Subgroups</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi9EKwiAYhSUIGrV3ELoeOHVtXY-iB-g2hpkOh-ny10Fv34q67-rjfOecBcooY2XRcEpXKAcYCCF0V9OqYhm6tFYAGG2kiMY77DWGdO2DTyN8wvM-WiWjkfgnJxWwNs5ENUPZG2DpXRSzcT0WOAbhYHpfvNugpRYWVP7lGm2Ph3N7KsbgH0lB7AafgpurjpKGl_u64Yz9t3oBvbpFGA</recordid><startdate>20140506</startdate><enddate>20140506</enddate><creator>Arias-de-Reyna, Sara</creator><creator>Dieulefait, Luis</creator><creator>Wiese, Gabor</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140506</creationdate><title>Classification of subgroups of symplectic groups over finite fields containing a transvection</title><author>Arias-de-Reyna, Sara ; Dieulefait, Luis ; Wiese, Gabor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20841978433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Classification</topic><topic>Conjugation</topic><topic>Fields (mathematics)</topic><topic>Subgroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Arias-de-Reyna, Sara</creatorcontrib><creatorcontrib>Dieulefait, Luis</creatorcontrib><creatorcontrib>Wiese, Gabor</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arias-de-Reyna, Sara</au><au>Dieulefait, Luis</au><au>Wiese, Gabor</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Classification of subgroups of symplectic groups over finite fields containing a transvection</atitle><jtitle>arXiv.org</jtitle><date>2014-05-06</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this note we give a self-contained proof of the following classification (up to conjugation) of subgroups of the general symplectic group of dimension n over a finite field of characteristic l, for l at least 5, which can be derived from work of Kantor: G is either reducible, symplectically imprimitive or it contains Sp(n, l). This result is for instance useful for proving "big image" results for symplectic Galois representations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084197843 |
source | Access via ProQuest (Open Access) |
subjects | Classification Conjugation Fields (mathematics) Subgroups |
title | Classification of subgroups of symplectic groups over finite fields containing a transvection |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A53%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Classification%20of%20subgroups%20of%20symplectic%20groups%20over%20finite%20fields%20containing%20a%20transvection&rft.jtitle=arXiv.org&rft.au=Arias-de-Reyna,%20Sara&rft.date=2014-05-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084197843%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20841978433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084197843&rft_id=info:pmid/&rfr_iscdi=true |