Loading…

Objective Bayesian Model Discrimination in Follow-up Experimental Designs

An initial screening experiment may lead to ambiguous conclusions regarding the factors which are active in explaining the variation of an outcome variable: thus adding follow-up runs becomes necessary. We propose a fully Bayes objective approach to follow-up designs, using prior distributions suita...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-05
Main Authors: Consonni, Guido, Deldossi, Laura
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Consonni, Guido
Deldossi, Laura
description An initial screening experiment may lead to ambiguous conclusions regarding the factors which are active in explaining the variation of an outcome variable: thus adding follow-up runs becomes necessary. We propose a fully Bayes objective approach to follow-up designs, using prior distributions suitably tailored to model selection. We adopt a model criterion based on a weighted average of Kullback-Leibler divergences between predictive distributions for all possible pairs of models. When applied to real data, our method produces results which compare favorably to previous analyses based on subjective weakly informative priors.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084205175</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084205175</sourcerecordid><originalsourceid>FETCH-proquest_journals_20842051753</originalsourceid><addsrcrecordid>eNqNjr0KwjAURoMgWLTvEHAupImxzmqLDuLiXmK9Skq8qb2pP29vBh_A6RvOOfCNWCKVyrPVQsoJS4laIYRcFlJrlbD98dxCE-wT-Np8gKxBfvAXcHxrqent3aIJ1iO3yCvvnH9lQ8fLdweRAQYTxVjdkGZsfDWOIP3tlM2r8rTZZV3vHwNQqFs_9BhRLUU8I3ReaPWf9QWTfzx-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084205175</pqid></control><display><type>article</type><title>Objective Bayesian Model Discrimination in Follow-up Experimental Designs</title><source>Publicly Available Content Database</source><creator>Consonni, Guido ; Deldossi, Laura</creator><creatorcontrib>Consonni, Guido ; Deldossi, Laura</creatorcontrib><description>An initial screening experiment may lead to ambiguous conclusions regarding the factors which are active in explaining the variation of an outcome variable: thus adding follow-up runs becomes necessary. We propose a fully Bayes objective approach to follow-up designs, using prior distributions suitably tailored to model selection. We adopt a model criterion based on a weighted average of Kullback-Leibler divergences between predictive distributions for all possible pairs of models. When applied to real data, our method produces results which compare favorably to previous analyses based on subjective weakly informative priors.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis</subject><ispartof>arXiv.org, 2014-05</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084205175?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Consonni, Guido</creatorcontrib><creatorcontrib>Deldossi, Laura</creatorcontrib><title>Objective Bayesian Model Discrimination in Follow-up Experimental Designs</title><title>arXiv.org</title><description>An initial screening experiment may lead to ambiguous conclusions regarding the factors which are active in explaining the variation of an outcome variable: thus adding follow-up runs becomes necessary. We propose a fully Bayes objective approach to follow-up designs, using prior distributions suitably tailored to model selection. We adopt a model criterion based on a weighted average of Kullback-Leibler divergences between predictive distributions for all possible pairs of models. When applied to real data, our method produces results which compare favorably to previous analyses based on subjective weakly informative priors.</description><subject>Bayesian analysis</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjr0KwjAURoMgWLTvEHAupImxzmqLDuLiXmK9Skq8qb2pP29vBh_A6RvOOfCNWCKVyrPVQsoJS4laIYRcFlJrlbD98dxCE-wT-Np8gKxBfvAXcHxrqent3aIJ1iO3yCvvnH9lQ8fLdweRAQYTxVjdkGZsfDWOIP3tlM2r8rTZZV3vHwNQqFs_9BhRLUU8I3ReaPWf9QWTfzx-</recordid><startdate>20140512</startdate><enddate>20140512</enddate><creator>Consonni, Guido</creator><creator>Deldossi, Laura</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140512</creationdate><title>Objective Bayesian Model Discrimination in Follow-up Experimental Designs</title><author>Consonni, Guido ; Deldossi, Laura</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20842051753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bayesian analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Consonni, Guido</creatorcontrib><creatorcontrib>Deldossi, Laura</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Consonni, Guido</au><au>Deldossi, Laura</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Objective Bayesian Model Discrimination in Follow-up Experimental Designs</atitle><jtitle>arXiv.org</jtitle><date>2014-05-12</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>An initial screening experiment may lead to ambiguous conclusions regarding the factors which are active in explaining the variation of an outcome variable: thus adding follow-up runs becomes necessary. We propose a fully Bayes objective approach to follow-up designs, using prior distributions suitably tailored to model selection. We adopt a model criterion based on a weighted average of Kullback-Leibler divergences between predictive distributions for all possible pairs of models. When applied to real data, our method produces results which compare favorably to previous analyses based on subjective weakly informative priors.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-05
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084205175
source Publicly Available Content Database
subjects Bayesian analysis
title Objective Bayesian Model Discrimination in Follow-up Experimental Designs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A54%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Objective%20Bayesian%20Model%20Discrimination%20in%20Follow-up%20Experimental%20Designs&rft.jtitle=arXiv.org&rft.au=Consonni,%20Guido&rft.date=2014-05-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084205175%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20842051753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084205175&rft_id=info:pmid/&rfr_iscdi=true