Loading…
Sphere Packing with Limited Overlap
The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of ov...
Saved in:
Published in: | arXiv.org 2014-01 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Iglesias-Ham, Mabel Kerber, Michael Uhler, Caroline |
description | The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084263684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084263684</sourcerecordid><originalsourceid>FETCH-proquest_journals_20842636843</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi7ISC1KVQhITM7OzEtXKM8syVDwyczNLElNUfAvSy3KSSzgYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwOgNWbGZhYmxsSpAgB5yi3_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084263684</pqid></control><display><type>article</type><title>Sphere Packing with Limited Overlap</title><source>Publicly Available Content (ProQuest)</source><creator>Iglesias-Ham, Mabel ; Kerber, Michael ; Uhler, Caroline</creator><creatorcontrib>Iglesias-Ham, Mabel ; Kerber, Michael ; Uhler, Caroline</creatorcontrib><description>The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Body centered cubic lattice ; Face centered cubic lattice</subject><ispartof>arXiv.org, 2014-01</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084263684?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Iglesias-Ham, Mabel</creatorcontrib><creatorcontrib>Kerber, Michael</creatorcontrib><creatorcontrib>Uhler, Caroline</creatorcontrib><title>Sphere Packing with Limited Overlap</title><title>arXiv.org</title><description>The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice.</description><subject>Body centered cubic lattice</subject><subject>Face centered cubic lattice</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQDi7ISC1KVQhITM7OzEtXKM8syVDwyczNLElNUfAvSy3KSSzgYWBNS8wpTuWF0twMym6uIc4eugVF-YWlqcUl8Vn5pUV5QKl4IwOgNWbGZhYmxsSpAgB5yi3_</recordid><startdate>20140102</startdate><enddate>20140102</enddate><creator>Iglesias-Ham, Mabel</creator><creator>Kerber, Michael</creator><creator>Uhler, Caroline</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140102</creationdate><title>Sphere Packing with Limited Overlap</title><author>Iglesias-Ham, Mabel ; Kerber, Michael ; Uhler, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20842636843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Body centered cubic lattice</topic><topic>Face centered cubic lattice</topic><toplevel>online_resources</toplevel><creatorcontrib>Iglesias-Ham, Mabel</creatorcontrib><creatorcontrib>Kerber, Michael</creatorcontrib><creatorcontrib>Uhler, Caroline</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iglesias-Ham, Mabel</au><au>Kerber, Michael</au><au>Uhler, Caroline</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sphere Packing with Limited Overlap</atitle><jtitle>arXiv.org</jtitle><date>2014-01-02</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The classical sphere packing problem asks for the best (infinite) arrangement of non-overlapping unit balls which cover as much space as possible. We define a generalized version of the problem, where we allow each ball a limited amount of overlap with other balls. We study two natural choices of overlap measures and obtain the optimal lattice packings in a parameterized family of lattices which contains the FCC, BCC, and integer lattice.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-01 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084263684 |
source | Publicly Available Content (ProQuest) |
subjects | Body centered cubic lattice Face centered cubic lattice |
title | Sphere Packing with Limited Overlap |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A56%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sphere%20Packing%20with%20Limited%20Overlap&rft.jtitle=arXiv.org&rft.au=Iglesias-Ham,%20Mabel&rft.date=2014-01-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084263684%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20842636843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084263684&rft_id=info:pmid/&rfr_iscdi=true |