Loading…

Southern Hemisphere westerly wind influence on southern New Zealand hydrology during the Lateglacial and Holocene

ABSTRACT The strength and latitudinal position of the southern westerly winds (SWW) influence mid‐latitude precipitation and carbon cycling in the Southern Ocean. Despite the important role the westerlies play in the global climate system, past variability is poorly constrained. Here, we present a g...

Full description

Saved in:
Bibliographic Details
Published in:Journal of quaternary science 2018-08, Vol.33 (6), p.689-701
Main Authors: Anderson, Harris J., Moy, Christopher M., Vandergoes, Marcus J., Nichols, Jonathan E., Riesselman, Christina R., Van Hale, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT The strength and latitudinal position of the southern westerly winds (SWW) influence mid‐latitude precipitation and carbon cycling in the Southern Ocean. Despite the important role the westerlies play in the global climate system, past variability is poorly constrained. Here, we present a geochemical record of hydroclimate change from Lake Von in south‐west New Zealand that spans the last 16 000 years. During the Lateglacial and early Holocene, we find stratigraphic and geochemical evidence for three distinct periods of low lake levels that occur during North Atlantic cold events when the Intertropical Convergence Zone is displaced southwards, Southern Ocean upwelling is enhanced and the Antarctic is rapidly warming. We attribute these hydrological changes to southward shifts of the SWW and associated storm tracks that cause arid conditions in southern New Zealand. During the early Holocene, we find evidence for an extended period of low lake levels that are caused by a combination of diminished wind strength, higher air temperatures and reduced seasonality. Finally, we interpret an overall intensification of the SWW after 5500 cal a bp. Our results support the idea that climate mechanisms originating in the high latitudes and the tropics work together to influence the SWW on millennial timescales.
ISSN:0267-8179
1099-1417
DOI:10.1002/jqs.3045