Loading…

SPDEs with fractional noise in space with index \(H<1/2\)

In this article, we consider the stochastic wave and heat equations on \(\mathbb{R}\) with non-vanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index \(H\), with \(1/4

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-07
Main Authors: Balan, Raluca, Jolis, Maria, Quer-Sardanyons, Lluis
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Balan, Raluca
Jolis, Maria
Quer-Sardanyons, Lluis
description In this article, we consider the stochastic wave and heat equations on \(\mathbb{R}\) with non-vanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index \(H\), with \(1/4
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084382967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084382967</sourcerecordid><originalsourceid>FETCH-proquest_journals_20843829673</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDA5wcS1WKM8syVBIK0pMLsnMz0vMUcjLzyxOVcjMUyguSExOhUhn5qWkVijEaHjYGOobxWjyMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80iKgYcXxRgYWJsYWRpZm5sbEqQIAtSo0kg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084382967</pqid></control><display><type>article</type><title>SPDEs with fractional noise in space with index \(H&lt;1/2\)</title><source>Publicly Available Content Database</source><creator>Balan, Raluca ; Jolis, Maria ; Quer-Sardanyons, Lluis</creator><creatorcontrib>Balan, Raluca ; Jolis, Maria ; Quer-Sardanyons, Lluis</creatorcontrib><description>In this article, we consider the stochastic wave and heat equations on \(\mathbb{R}\) with non-vanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index \(H\), with \(1/4&lt;H&lt;1/2\). We assume that the diffusion coefficient is given by an affine function \(\sigma(x)=ax+b\), and the initial value functions are bounded and H\"older continuous of order \(H\). We prove the existence and uniqueness of the mild solution for both equations. We show that the solution is \(L^{2}(\Omega)\)-continuous and its \(p\)-th moments are uniformly bounded, for any \(p \geq 2\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Brownian motion ; Diffusion coefficient ; Initial conditions ; Mathematical analysis ; Normal distribution ; Random noise ; Thermodynamics</subject><ispartof>arXiv.org, 2014-07</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084382967?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>Balan, Raluca</creatorcontrib><creatorcontrib>Jolis, Maria</creatorcontrib><creatorcontrib>Quer-Sardanyons, Lluis</creatorcontrib><title>SPDEs with fractional noise in space with index \(H&lt;1/2\)</title><title>arXiv.org</title><description>In this article, we consider the stochastic wave and heat equations on \(\mathbb{R}\) with non-vanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index \(H\), with \(1/4&lt;H&lt;1/2\). We assume that the diffusion coefficient is given by an affine function \(\sigma(x)=ax+b\), and the initial value functions are bounded and H\"older continuous of order \(H\). We prove the existence and uniqueness of the mild solution for both equations. We show that the solution is \(L^{2}(\Omega)\)-continuous and its \(p\)-th moments are uniformly bounded, for any \(p \geq 2\).</description><subject>Brownian motion</subject><subject>Diffusion coefficient</subject><subject>Initial conditions</subject><subject>Mathematical analysis</subject><subject>Normal distribution</subject><subject>Random noise</subject><subject>Thermodynamics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwDA5wcS1WKM8syVBIK0pMLsnMz0vMUcjLzyxOVcjMUyguSExOhUhn5qWkVijEaHjYGOobxWjyMLCmJeYUp_JCaW4GZTfXEGcP3YKi_MLS1OKS-Kz80iKgYcXxRgYWJsYWRpZm5sbEqQIAtSo0kg</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Balan, Raluca</creator><creator>Jolis, Maria</creator><creator>Quer-Sardanyons, Lluis</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140715</creationdate><title>SPDEs with fractional noise in space with index \(H&lt;1/2\)</title><author>Balan, Raluca ; Jolis, Maria ; Quer-Sardanyons, Lluis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20843829673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Brownian motion</topic><topic>Diffusion coefficient</topic><topic>Initial conditions</topic><topic>Mathematical analysis</topic><topic>Normal distribution</topic><topic>Random noise</topic><topic>Thermodynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Balan, Raluca</creatorcontrib><creatorcontrib>Jolis, Maria</creatorcontrib><creatorcontrib>Quer-Sardanyons, Lluis</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balan, Raluca</au><au>Jolis, Maria</au><au>Quer-Sardanyons, Lluis</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SPDEs with fractional noise in space with index \(H&lt;1/2\)</atitle><jtitle>arXiv.org</jtitle><date>2014-07-15</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this article, we consider the stochastic wave and heat equations on \(\mathbb{R}\) with non-vanishing initial conditions, driven by a Gaussian noise which is white in time and behaves in space like a fractional Brownian motion of index \(H\), with \(1/4&lt;H&lt;1/2\). We assume that the diffusion coefficient is given by an affine function \(\sigma(x)=ax+b\), and the initial value functions are bounded and H\"older continuous of order \(H\). We prove the existence and uniqueness of the mild solution for both equations. We show that the solution is \(L^{2}(\Omega)\)-continuous and its \(p\)-th moments are uniformly bounded, for any \(p \geq 2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084382967
source Publicly Available Content Database
subjects Brownian motion
Diffusion coefficient
Initial conditions
Mathematical analysis
Normal distribution
Random noise
Thermodynamics
title SPDEs with fractional noise in space with index \(H<1/2\)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SPDEs%20with%20fractional%20noise%20in%20space%20with%20index%20%5C(H%3C1/2%5C)&rft.jtitle=arXiv.org&rft.au=Balan,%20Raluca&rft.date=2014-07-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084382967%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20843829673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084382967&rft_id=info:pmid/&rfr_iscdi=true