Loading…

A Strained Silicon Cold Electron Bolometer using Schottky Contacts

We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon i...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-07
Main Authors: Brien, T L R, Ade, P A R, Barry, P S, Dunscombe, C, Leadley, D R, Morozov, D V, Myronov, M, Parker, E H C, Prunnila, M, Prest, M J, Sudiwala, R V, Whall, T E, Mauskopf, P D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Brien, T L R
Ade, P A R
Barry, P S
Dunscombe, C
Leadley, D R
Morozov, D V
Myronov, M
Parker, E H C
Prunnila, M
Prest, M J
Sudiwala, R V
Whall, T E
Mauskopf, P D
description We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.
doi_str_mv 10.48550/arxiv.1407.2113
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084391544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084391544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514-1ac024f373dbeb86c3b62ffc891245bce1c455384a2957975fa6ef92318f32513</originalsourceid><addsrcrecordid>eNotjk1LxDAURYMgOIyzd1lw3Zr3XtKmy5kyfsCAi85-SNNEO9ZGk1T031vQ1eXC4Z7L2A3wQigp-Z0O38NXAYJXBQLQBVshEeRKIF6xTYxnzjmWFUpJK7bbZm0Kephsn7XDOBg_ZY0f-2w_WpPC0nZ-9O822ZDNcZhesta8-pTefhZsStqkeM0unR6j3fznmh3v98fmMT88Pzw120OuJYgctOEoHFXUd7ZTpaGuROeMqgGF7IwFI5ZHSmisZVVX0unSuhoJlCOUQGt2-zf7EfznbGM6nf0cpsV4Qq4E1SCFoF-DzEp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084391544</pqid></control><display><type>article</type><title>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</title><source>Publicly Available Content (ProQuest)</source><creator>Brien, T L R ; Ade, P A R ; Barry, P S ; Dunscombe, C ; Leadley, D R ; Morozov, D V ; Myronov, M ; Parker, E H C ; Prunnila, M ; Prest, M J ; Sudiwala, R V ; Whall, T E ; Mauskopf, P D</creator><creatorcontrib>Brien, T L R ; Ade, P A R ; Barry, P S ; Dunscombe, C ; Leadley, D R ; Morozov, D V ; Myronov, M ; Parker, E H C ; Prunnila, M ; Prest, M J ; Sudiwala, R V ; Whall, T E ; Mauskopf, P D</creatorcontrib><description>We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1407.2113</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorbers ; Aluminum ; Apertures ; Bolometers ; Change detection ; Correlation analysis ; Current carriers ; Electrons ; Equivalence ; Field effect transistors ; JFET ; Millimeter waves ; Noise ; Noise equivalent temperature difference ; Noise measurement ; Optical properties ; Phonons ; Semiconductor devices ; Shot noise ; Silicon ; Slot antennas ; Spectral sensitivity ; Temperature gradients ; Thermal noise</subject><ispartof>arXiv.org, 2014-07</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084391544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Brien, T L R</creatorcontrib><creatorcontrib>Ade, P A R</creatorcontrib><creatorcontrib>Barry, P S</creatorcontrib><creatorcontrib>Dunscombe, C</creatorcontrib><creatorcontrib>Leadley, D R</creatorcontrib><creatorcontrib>Morozov, D V</creatorcontrib><creatorcontrib>Myronov, M</creatorcontrib><creatorcontrib>Parker, E H C</creatorcontrib><creatorcontrib>Prunnila, M</creatorcontrib><creatorcontrib>Prest, M J</creatorcontrib><creatorcontrib>Sudiwala, R V</creatorcontrib><creatorcontrib>Whall, T E</creatorcontrib><creatorcontrib>Mauskopf, P D</creatorcontrib><title>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</title><title>arXiv.org</title><description>We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.</description><subject>Absorbers</subject><subject>Aluminum</subject><subject>Apertures</subject><subject>Bolometers</subject><subject>Change detection</subject><subject>Correlation analysis</subject><subject>Current carriers</subject><subject>Electrons</subject><subject>Equivalence</subject><subject>Field effect transistors</subject><subject>JFET</subject><subject>Millimeter waves</subject><subject>Noise</subject><subject>Noise equivalent temperature difference</subject><subject>Noise measurement</subject><subject>Optical properties</subject><subject>Phonons</subject><subject>Semiconductor devices</subject><subject>Shot noise</subject><subject>Silicon</subject><subject>Slot antennas</subject><subject>Spectral sensitivity</subject><subject>Temperature gradients</subject><subject>Thermal noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LxDAURYMgOIyzd1lw3Zr3XtKmy5kyfsCAi85-SNNEO9ZGk1T031vQ1eXC4Z7L2A3wQigp-Z0O38NXAYJXBQLQBVshEeRKIF6xTYxnzjmWFUpJK7bbZm0Kephsn7XDOBg_ZY0f-2w_WpPC0nZ-9O822ZDNcZhesta8-pTefhZsStqkeM0unR6j3fznmh3v98fmMT88Pzw120OuJYgctOEoHFXUd7ZTpaGuROeMqgGF7IwFI5ZHSmisZVVX0unSuhoJlCOUQGt2-zf7EfznbGM6nf0cpsV4Qq4E1SCFoF-DzEp0</recordid><startdate>20140731</startdate><enddate>20140731</enddate><creator>Brien, T L R</creator><creator>Ade, P A R</creator><creator>Barry, P S</creator><creator>Dunscombe, C</creator><creator>Leadley, D R</creator><creator>Morozov, D V</creator><creator>Myronov, M</creator><creator>Parker, E H C</creator><creator>Prunnila, M</creator><creator>Prest, M J</creator><creator>Sudiwala, R V</creator><creator>Whall, T E</creator><creator>Mauskopf, P D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140731</creationdate><title>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</title><author>Brien, T L R ; Ade, P A R ; Barry, P S ; Dunscombe, C ; Leadley, D R ; Morozov, D V ; Myronov, M ; Parker, E H C ; Prunnila, M ; Prest, M J ; Sudiwala, R V ; Whall, T E ; Mauskopf, P D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514-1ac024f373dbeb86c3b62ffc891245bce1c455384a2957975fa6ef92318f32513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorbers</topic><topic>Aluminum</topic><topic>Apertures</topic><topic>Bolometers</topic><topic>Change detection</topic><topic>Correlation analysis</topic><topic>Current carriers</topic><topic>Electrons</topic><topic>Equivalence</topic><topic>Field effect transistors</topic><topic>JFET</topic><topic>Millimeter waves</topic><topic>Noise</topic><topic>Noise equivalent temperature difference</topic><topic>Noise measurement</topic><topic>Optical properties</topic><topic>Phonons</topic><topic>Semiconductor devices</topic><topic>Shot noise</topic><topic>Silicon</topic><topic>Slot antennas</topic><topic>Spectral sensitivity</topic><topic>Temperature gradients</topic><topic>Thermal noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Brien, T L R</creatorcontrib><creatorcontrib>Ade, P A R</creatorcontrib><creatorcontrib>Barry, P S</creatorcontrib><creatorcontrib>Dunscombe, C</creatorcontrib><creatorcontrib>Leadley, D R</creatorcontrib><creatorcontrib>Morozov, D V</creatorcontrib><creatorcontrib>Myronov, M</creatorcontrib><creatorcontrib>Parker, E H C</creatorcontrib><creatorcontrib>Prunnila, M</creatorcontrib><creatorcontrib>Prest, M J</creatorcontrib><creatorcontrib>Sudiwala, R V</creatorcontrib><creatorcontrib>Whall, T E</creatorcontrib><creatorcontrib>Mauskopf, P D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brien, T L R</au><au>Ade, P A R</au><au>Barry, P S</au><au>Dunscombe, C</au><au>Leadley, D R</au><au>Morozov, D V</au><au>Myronov, M</au><au>Parker, E H C</au><au>Prunnila, M</au><au>Prest, M J</au><au>Sudiwala, R V</au><au>Whall, T E</au><au>Mauskopf, P D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</atitle><jtitle>arXiv.org</jtitle><date>2014-07-31</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1407.2113</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084391544
source Publicly Available Content (ProQuest)
subjects Absorbers
Aluminum
Apertures
Bolometers
Change detection
Correlation analysis
Current carriers
Electrons
Equivalence
Field effect transistors
JFET
Millimeter waves
Noise
Noise equivalent temperature difference
Noise measurement
Optical properties
Phonons
Semiconductor devices
Shot noise
Silicon
Slot antennas
Spectral sensitivity
Temperature gradients
Thermal noise
title A Strained Silicon Cold Electron Bolometer using Schottky Contacts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Strained%20Silicon%20Cold%20Electron%20Bolometer%20using%20Schottky%20Contacts&rft.jtitle=arXiv.org&rft.au=Brien,%20T%20L%20R&rft.date=2014-07-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1407.2113&rft_dat=%3Cproquest%3E2084391544%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514-1ac024f373dbeb86c3b62ffc891245bce1c455384a2957975fa6ef92318f32513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084391544&rft_id=info:pmid/&rfr_iscdi=true