Loading…
A Strained Silicon Cold Electron Bolometer using Schottky Contacts
We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon i...
Saved in:
Published in: | arXiv.org 2014-07 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Brien, T L R Ade, P A R Barry, P S Dunscombe, C Leadley, D R Morozov, D V Myronov, M Parker, E H C Prunnila, M Prest, M J Sudiwala, R V Whall, T E Mauskopf, P D |
description | We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise. |
doi_str_mv | 10.48550/arxiv.1407.2113 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084391544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084391544</sourcerecordid><originalsourceid>FETCH-LOGICAL-a514-1ac024f373dbeb86c3b62ffc891245bce1c455384a2957975fa6ef92318f32513</originalsourceid><addsrcrecordid>eNotjk1LxDAURYMgOIyzd1lw3Zr3XtKmy5kyfsCAi85-SNNEO9ZGk1T031vQ1eXC4Z7L2A3wQigp-Z0O38NXAYJXBQLQBVshEeRKIF6xTYxnzjmWFUpJK7bbZm0Kephsn7XDOBg_ZY0f-2w_WpPC0nZ-9O822ZDNcZhesta8-pTefhZsStqkeM0unR6j3fznmh3v98fmMT88Pzw120OuJYgctOEoHFXUd7ZTpaGuROeMqgGF7IwFI5ZHSmisZVVX0unSuhoJlCOUQGt2-zf7EfznbGM6nf0cpsV4Qq4E1SCFoF-DzEp0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084391544</pqid></control><display><type>article</type><title>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</title><source>Publicly Available Content (ProQuest)</source><creator>Brien, T L R ; Ade, P A R ; Barry, P S ; Dunscombe, C ; Leadley, D R ; Morozov, D V ; Myronov, M ; Parker, E H C ; Prunnila, M ; Prest, M J ; Sudiwala, R V ; Whall, T E ; Mauskopf, P D</creator><creatorcontrib>Brien, T L R ; Ade, P A R ; Barry, P S ; Dunscombe, C ; Leadley, D R ; Morozov, D V ; Myronov, M ; Parker, E H C ; Prunnila, M ; Prest, M J ; Sudiwala, R V ; Whall, T E ; Mauskopf, P D</creatorcontrib><description>We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1407.2113</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Absorbers ; Aluminum ; Apertures ; Bolometers ; Change detection ; Correlation analysis ; Current carriers ; Electrons ; Equivalence ; Field effect transistors ; JFET ; Millimeter waves ; Noise ; Noise equivalent temperature difference ; Noise measurement ; Optical properties ; Phonons ; Semiconductor devices ; Shot noise ; Silicon ; Slot antennas ; Spectral sensitivity ; Temperature gradients ; Thermal noise</subject><ispartof>arXiv.org, 2014-07</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084391544?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Brien, T L R</creatorcontrib><creatorcontrib>Ade, P A R</creatorcontrib><creatorcontrib>Barry, P S</creatorcontrib><creatorcontrib>Dunscombe, C</creatorcontrib><creatorcontrib>Leadley, D R</creatorcontrib><creatorcontrib>Morozov, D V</creatorcontrib><creatorcontrib>Myronov, M</creatorcontrib><creatorcontrib>Parker, E H C</creatorcontrib><creatorcontrib>Prunnila, M</creatorcontrib><creatorcontrib>Prest, M J</creatorcontrib><creatorcontrib>Sudiwala, R V</creatorcontrib><creatorcontrib>Whall, T E</creatorcontrib><creatorcontrib>Mauskopf, P D</creatorcontrib><title>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</title><title>arXiv.org</title><description>We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.</description><subject>Absorbers</subject><subject>Aluminum</subject><subject>Apertures</subject><subject>Bolometers</subject><subject>Change detection</subject><subject>Correlation analysis</subject><subject>Current carriers</subject><subject>Electrons</subject><subject>Equivalence</subject><subject>Field effect transistors</subject><subject>JFET</subject><subject>Millimeter waves</subject><subject>Noise</subject><subject>Noise equivalent temperature difference</subject><subject>Noise measurement</subject><subject>Optical properties</subject><subject>Phonons</subject><subject>Semiconductor devices</subject><subject>Shot noise</subject><subject>Silicon</subject><subject>Slot antennas</subject><subject>Spectral sensitivity</subject><subject>Temperature gradients</subject><subject>Thermal noise</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LxDAURYMgOIyzd1lw3Zr3XtKmy5kyfsCAi85-SNNEO9ZGk1T031vQ1eXC4Z7L2A3wQigp-Z0O38NXAYJXBQLQBVshEeRKIF6xTYxnzjmWFUpJK7bbZm0Kephsn7XDOBg_ZY0f-2w_WpPC0nZ-9O822ZDNcZhesta8-pTefhZsStqkeM0unR6j3fznmh3v98fmMT88Pzw120OuJYgctOEoHFXUd7ZTpaGuROeMqgGF7IwFI5ZHSmisZVVX0unSuhoJlCOUQGt2-zf7EfznbGM6nf0cpsV4Qq4E1SCFoF-DzEp0</recordid><startdate>20140731</startdate><enddate>20140731</enddate><creator>Brien, T L R</creator><creator>Ade, P A R</creator><creator>Barry, P S</creator><creator>Dunscombe, C</creator><creator>Leadley, D R</creator><creator>Morozov, D V</creator><creator>Myronov, M</creator><creator>Parker, E H C</creator><creator>Prunnila, M</creator><creator>Prest, M J</creator><creator>Sudiwala, R V</creator><creator>Whall, T E</creator><creator>Mauskopf, P D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140731</creationdate><title>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</title><author>Brien, T L R ; Ade, P A R ; Barry, P S ; Dunscombe, C ; Leadley, D R ; Morozov, D V ; Myronov, M ; Parker, E H C ; Prunnila, M ; Prest, M J ; Sudiwala, R V ; Whall, T E ; Mauskopf, P D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a514-1ac024f373dbeb86c3b62ffc891245bce1c455384a2957975fa6ef92318f32513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Absorbers</topic><topic>Aluminum</topic><topic>Apertures</topic><topic>Bolometers</topic><topic>Change detection</topic><topic>Correlation analysis</topic><topic>Current carriers</topic><topic>Electrons</topic><topic>Equivalence</topic><topic>Field effect transistors</topic><topic>JFET</topic><topic>Millimeter waves</topic><topic>Noise</topic><topic>Noise equivalent temperature difference</topic><topic>Noise measurement</topic><topic>Optical properties</topic><topic>Phonons</topic><topic>Semiconductor devices</topic><topic>Shot noise</topic><topic>Silicon</topic><topic>Slot antennas</topic><topic>Spectral sensitivity</topic><topic>Temperature gradients</topic><topic>Thermal noise</topic><toplevel>online_resources</toplevel><creatorcontrib>Brien, T L R</creatorcontrib><creatorcontrib>Ade, P A R</creatorcontrib><creatorcontrib>Barry, P S</creatorcontrib><creatorcontrib>Dunscombe, C</creatorcontrib><creatorcontrib>Leadley, D R</creatorcontrib><creatorcontrib>Morozov, D V</creatorcontrib><creatorcontrib>Myronov, M</creatorcontrib><creatorcontrib>Parker, E H C</creatorcontrib><creatorcontrib>Prunnila, M</creatorcontrib><creatorcontrib>Prest, M J</creatorcontrib><creatorcontrib>Sudiwala, R V</creatorcontrib><creatorcontrib>Whall, T E</creatorcontrib><creatorcontrib>Mauskopf, P D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brien, T L R</au><au>Ade, P A R</au><au>Barry, P S</au><au>Dunscombe, C</au><au>Leadley, D R</au><au>Morozov, D V</au><au>Myronov, M</au><au>Parker, E H C</au><au>Prunnila, M</au><au>Prest, M J</au><au>Sudiwala, R V</au><au>Whall, T E</au><au>Mauskopf, P D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Strained Silicon Cold Electron Bolometer using Schottky Contacts</atitle><jtitle>arXiv.org</jtitle><date>2014-07-31</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a \(350~\mathrm{mK}\) stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to \(160~\mathrm{GHz}\) and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of \(50~\%\) for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of \(1.1 \times 10^{-16}~\mathrm{\mbox{W Hz}^{-1/2}}\) when the detector is observing a \(300~\mathrm{K}\) source through a \(4~\mathrm{K}\) throughput limiting aperture. Even though this optical system is not optimised we measure a system noise equivalent temperature difference (NETD) of \(6~\mathrm{\mbox{mK Hz}^{-1/2}}\). We measure the noise of the device using a cross-correlation of time stream data measured simultaneously with two junction field-effect transistor (JFET) amplifiers, with a base correlated noise level of \(300~\mathrm{\mbox{pV Hz}^{-1/2}}\) and find that the total noise is consistent with a combination of photon noise, current shot noise and electron-phonon thermal noise.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1407.2113</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084391544 |
source | Publicly Available Content (ProQuest) |
subjects | Absorbers Aluminum Apertures Bolometers Change detection Correlation analysis Current carriers Electrons Equivalence Field effect transistors JFET Millimeter waves Noise Noise equivalent temperature difference Noise measurement Optical properties Phonons Semiconductor devices Shot noise Silicon Slot antennas Spectral sensitivity Temperature gradients Thermal noise |
title | A Strained Silicon Cold Electron Bolometer using Schottky Contacts |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Strained%20Silicon%20Cold%20Electron%20Bolometer%20using%20Schottky%20Contacts&rft.jtitle=arXiv.org&rft.au=Brien,%20T%20L%20R&rft.date=2014-07-31&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1407.2113&rft_dat=%3Cproquest%3E2084391544%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a514-1ac024f373dbeb86c3b62ffc891245bce1c455384a2957975fa6ef92318f32513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084391544&rft_id=info:pmid/&rfr_iscdi=true |