Loading…

Commensurability classes of (-2,3,n) pretzel knot complements

Let K be a hyperbolic (-2,3,n) pretzel knot and M = S^3 K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M. Indeed, if n \neq 7, we show that M is the unique knot complement in its class. We include...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2008-04
Main Authors: Macasieb, Melissa L, Mattman, Thomas W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Macasieb, Melissa L
Mattman, Thomas W
description Let K be a hyperbolic (-2,3,n) pretzel knot and M = S^3 K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M. Indeed, if n \neq 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots.
doi_str_mv 10.48550/arxiv.0804.0112
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084407347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084407347</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517-18e54602cd37c8572abd342ef2250ab77cbb36598d8e8a1f95d264c8816aa2ec3</originalsourceid><addsrcrecordid>eNotjc9LwzAYQIMgOObuHgNeFNb55UvSfDt4kOIvGHjZfaTpV-hsm9q0ov71DvT0Tu89Ia4UbAxZC3d-_Go-N0BgNqAUnokFaq0yMogXYpXSEQAwd2itXoj7InYd92kefdm0zfQtQ-tT4iRjLW8yXOt1fyuHkacfbuV7HycZYje0fJKmdCnOa98mXv1zKfZPj_viJdu9Pb8WD7vMW-UyRWxNDhgq7QJZh76stEGuES340rlQljq3W6qIyat6ayvMTSBSuffIQS_F9V92GOPHzGk6HOM89qfjAYGMAaeN07-eakiV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084407347</pqid></control><display><type>article</type><title>Commensurability classes of (-2,3,n) pretzel knot complements</title><source>Publicly Available Content Database</source><creator>Macasieb, Melissa L ; Mattman, Thomas W</creator><creatorcontrib>Macasieb, Melissa L ; Mattman, Thomas W</creatorcontrib><description>Let K be a hyperbolic (-2,3,n) pretzel knot and M = S^3 K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M. Indeed, if n \neq 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.0804.0112</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Knots</subject><ispartof>arXiv.org, 2008-04</ispartof><rights>2008. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084407347?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Macasieb, Melissa L</creatorcontrib><creatorcontrib>Mattman, Thomas W</creatorcontrib><title>Commensurability classes of (-2,3,n) pretzel knot complements</title><title>arXiv.org</title><description>Let K be a hyperbolic (-2,3,n) pretzel knot and M = S^3 K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M. Indeed, if n \neq 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots.</description><subject>Knots</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjc9LwzAYQIMgOObuHgNeFNb55UvSfDt4kOIvGHjZfaTpV-hsm9q0ov71DvT0Tu89Ia4UbAxZC3d-_Go-N0BgNqAUnokFaq0yMogXYpXSEQAwd2itXoj7InYd92kefdm0zfQtQ-tT4iRjLW8yXOt1fyuHkacfbuV7HycZYje0fJKmdCnOa98mXv1zKfZPj_viJdu9Pb8WD7vMW-UyRWxNDhgq7QJZh76stEGuES340rlQljq3W6qIyat6ayvMTSBSuffIQS_F9V92GOPHzGk6HOM89qfjAYGMAaeN07-eakiV</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Macasieb, Melissa L</creator><creator>Mattman, Thomas W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20080401</creationdate><title>Commensurability classes of (-2,3,n) pretzel knot complements</title><author>Macasieb, Melissa L ; Mattman, Thomas W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517-18e54602cd37c8572abd342ef2250ab77cbb36598d8e8a1f95d264c8816aa2ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Knots</topic><toplevel>online_resources</toplevel><creatorcontrib>Macasieb, Melissa L</creatorcontrib><creatorcontrib>Mattman, Thomas W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Database (Proquest)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macasieb, Melissa L</au><au>Mattman, Thomas W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commensurability classes of (-2,3,n) pretzel knot complements</atitle><jtitle>arXiv.org</jtitle><date>2008-04-01</date><risdate>2008</risdate><eissn>2331-8422</eissn><abstract>Let K be a hyperbolic (-2,3,n) pretzel knot and M = S^3 K its complement. For these knots, we verify a conjecture of Reid and Walsh: there are at most three knot complements in the commensurability class of M. Indeed, if n \neq 7, we show that M is the unique knot complement in its class. We include examples to illustrate how our methods apply to a broad class of Montesinos knots.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.0804.0112</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2008-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084407347
source Publicly Available Content Database
subjects Knots
title Commensurability classes of (-2,3,n) pretzel knot complements
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commensurability%20classes%20of%20(-2,3,n)%20pretzel%20knot%20complements&rft.jtitle=arXiv.org&rft.au=Macasieb,%20Melissa%20L&rft.date=2008-04-01&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.0804.0112&rft_dat=%3Cproquest%3E2084407347%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a517-18e54602cd37c8572abd342ef2250ab77cbb36598d8e8a1f95d264c8816aa2ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084407347&rft_id=info:pmid/&rfr_iscdi=true