Loading…

On the compactness property of extensions of first-order Gödel logic

We study three kinds of compactness in some variants of G\"odel logic: compactness, entailment compactness, and approximate entailment compactness. For countable first-order underlying language we use the Henkin construction to prove the compactness property of extensions of first-order G\"...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-10
Main Author: Seyed Mohammad Amin Khatami
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Seyed Mohammad Amin Khatami
description We study three kinds of compactness in some variants of G\"odel logic: compactness, entailment compactness, and approximate entailment compactness. For countable first-order underlying language we use the Henkin construction to prove the compactness property of extensions of first-order G\"odel logic enriched by nullary connective or the Baaz's projection connective. In the case of uncountable first-order language we use the ultraproduct method to derive the compactness theorem
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084555496</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084555496</sourcerecordid><originalsourceid>FETCH-proquest_journals_20845554963</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9c9TKMlIVUjOzy1ITC7JSy0uVigoyi9ILSqpVMhPU0itKEnNK87MzysG8dIyi4pLdPOLUlKLFNwPb0tJzVHIyU_PTOZhYE1LzClO5YXS3AzKbq4hzh66QKMKS1OLS-Kz8kuL8oBS8UYGFiampqYmlmbGxKkCAOMhO9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084555496</pqid></control><display><type>article</type><title>On the compactness property of extensions of first-order Gödel logic</title><source>Publicly Available Content (ProQuest)</source><creator>Seyed Mohammad Amin Khatami</creator><creatorcontrib>Seyed Mohammad Amin Khatami</creatorcontrib><description>We study three kinds of compactness in some variants of G\"odel logic: compactness, entailment compactness, and approximate entailment compactness. For countable first-order underlying language we use the Henkin construction to prove the compactness property of extensions of first-order G\"odel logic enriched by nullary connective or the Baaz's projection connective. In the case of uncountable first-order language we use the ultraproduct method to derive the compactness theorem</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Logic</subject><ispartof>arXiv.org, 2014-10</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084555496?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Seyed Mohammad Amin Khatami</creatorcontrib><title>On the compactness property of extensions of first-order Gödel logic</title><title>arXiv.org</title><description>We study three kinds of compactness in some variants of G\"odel logic: compactness, entailment compactness, and approximate entailment compactness. For countable first-order underlying language we use the Henkin construction to prove the compactness property of extensions of first-order G\"odel logic enriched by nullary connective or the Baaz's projection connective. In the case of uncountable first-order language we use the ultraproduct method to derive the compactness theorem</description><subject>Logic</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRw9c9TKMlIVUjOzy1ITC7JSy0uVigoyi9ILSqpVMhPU0itKEnNK87MzysG8dIyi4pLdPOLUlKLFNwPb0tJzVHIyU_PTOZhYE1LzClO5YXS3AzKbq4hzh66QKMKS1OLS-Kz8kuL8oBS8UYGFiampqYmlmbGxKkCAOMhO9s</recordid><startdate>20141025</startdate><enddate>20141025</enddate><creator>Seyed Mohammad Amin Khatami</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141025</creationdate><title>On the compactness property of extensions of first-order Gödel logic</title><author>Seyed Mohammad Amin Khatami</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20845554963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Logic</topic><toplevel>online_resources</toplevel><creatorcontrib>Seyed Mohammad Amin Khatami</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seyed Mohammad Amin Khatami</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the compactness property of extensions of first-order Gödel logic</atitle><jtitle>arXiv.org</jtitle><date>2014-10-25</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We study three kinds of compactness in some variants of G\"odel logic: compactness, entailment compactness, and approximate entailment compactness. For countable first-order underlying language we use the Henkin construction to prove the compactness property of extensions of first-order G\"odel logic enriched by nullary connective or the Baaz's projection connective. In the case of uncountable first-order language we use the ultraproduct method to derive the compactness theorem</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084555496
source Publicly Available Content (ProQuest)
subjects Logic
title On the compactness property of extensions of first-order Gödel logic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A58%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20compactness%20property%20of%20extensions%20of%20first-order%20G%C3%B6del%20logic&rft.jtitle=arXiv.org&rft.au=Seyed%20Mohammad%20Amin%20Khatami&rft.date=2014-10-25&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084555496%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20845554963%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084555496&rft_id=info:pmid/&rfr_iscdi=true