Loading…
Information Dimension of Dissipative Quantum Walks
We study the temporal growth of the von Neumann entropy for dissipative quantum walks on networks. By using a phenomenological quantum master equation, the quantum stochastic walk (QSW), we are able to parametrically scan the crossover from purely coherent quantum walks to purely diffusive random wa...
Saved in:
Published in: | arXiv.org 2014-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Schijven, P Muelken, O |
description | We study the temporal growth of the von Neumann entropy for dissipative quantum walks on networks. By using a phenomenological quantum master equation, the quantum stochastic walk (QSW), we are able to parametrically scan the crossover from purely coherent quantum walks to purely diffusive random walks. In the latter limit the entropy shows a logarithmic growth, which is proportional to the information dimension of the random walk on the network. Here we present results for the von Neumann entropy based on the reduced density operator of the QSW. It shows a similar logarithmic growth for a wide range of parameter values and networks. As a consequence, we propose the logarithmic growth rate of the von Neumann entropy to be a natural extension of the information dimension to dissipative quantum systems. We corroborate our results by comparing to numerically exact simulations. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084590234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084590234</sourcerecordid><originalsourceid>FETCH-proquest_journals_20845902343</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8sxLyy_KTSzJzM9TcMnMTc0rBrHy04Cc4uLMAqBEWapCYGliXklprkJ4Yk52MQ8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRsZWJiYWhoYGZsYE6cKAAB-NBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084590234</pqid></control><display><type>article</type><title>Information Dimension of Dissipative Quantum Walks</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Schijven, P ; Muelken, O</creator><creatorcontrib>Schijven, P ; Muelken, O</creatorcontrib><description>We study the temporal growth of the von Neumann entropy for dissipative quantum walks on networks. By using a phenomenological quantum master equation, the quantum stochastic walk (QSW), we are able to parametrically scan the crossover from purely coherent quantum walks to purely diffusive random walks. In the latter limit the entropy shows a logarithmic growth, which is proportional to the information dimension of the random walk on the network. Here we present results for the von Neumann entropy based on the reduced density operator of the QSW. It shows a similar logarithmic growth for a wide range of parameter values and networks. As a consequence, we propose the logarithmic growth rate of the von Neumann entropy to be a natural extension of the information dimension to dissipative quantum systems. We corroborate our results by comparing to numerically exact simulations.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Crossovers ; Economic models ; Entropy ; Random walk ; Random walk theory</subject><ispartof>arXiv.org, 2014-08</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084590234?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Schijven, P</creatorcontrib><creatorcontrib>Muelken, O</creatorcontrib><title>Information Dimension of Dissipative Quantum Walks</title><title>arXiv.org</title><description>We study the temporal growth of the von Neumann entropy for dissipative quantum walks on networks. By using a phenomenological quantum master equation, the quantum stochastic walk (QSW), we are able to parametrically scan the crossover from purely coherent quantum walks to purely diffusive random walks. In the latter limit the entropy shows a logarithmic growth, which is proportional to the information dimension of the random walk on the network. Here we present results for the von Neumann entropy based on the reduced density operator of the QSW. It shows a similar logarithmic growth for a wide range of parameter values and networks. As a consequence, we propose the logarithmic growth rate of the von Neumann entropy to be a natural extension of the information dimension to dissipative quantum systems. We corroborate our results by comparing to numerically exact simulations.</description><subject>Computer simulation</subject><subject>Crossovers</subject><subject>Economic models</subject><subject>Entropy</subject><subject>Random walk</subject><subject>Random walk theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw8sxLyy_KTSzJzM9TcMnMTc0rBrHy04Cc4uLMAqBEWapCYGliXklprkJ4Yk52MQ8Da1piTnEqL5TmZlB2cw1x9tAtKMovLE0tLonPyi8tygNKxRsZWJiYWhoYGZsYE6cKAAB-NBQ</recordid><startdate>20140813</startdate><enddate>20140813</enddate><creator>Schijven, P</creator><creator>Muelken, O</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140813</creationdate><title>Information Dimension of Dissipative Quantum Walks</title><author>Schijven, P ; Muelken, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20845902343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Crossovers</topic><topic>Economic models</topic><topic>Entropy</topic><topic>Random walk</topic><topic>Random walk theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Schijven, P</creatorcontrib><creatorcontrib>Muelken, O</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schijven, P</au><au>Muelken, O</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Information Dimension of Dissipative Quantum Walks</atitle><jtitle>arXiv.org</jtitle><date>2014-08-13</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We study the temporal growth of the von Neumann entropy for dissipative quantum walks on networks. By using a phenomenological quantum master equation, the quantum stochastic walk (QSW), we are able to parametrically scan the crossover from purely coherent quantum walks to purely diffusive random walks. In the latter limit the entropy shows a logarithmic growth, which is proportional to the information dimension of the random walk on the network. Here we present results for the von Neumann entropy based on the reduced density operator of the QSW. It shows a similar logarithmic growth for a wide range of parameter values and networks. As a consequence, we propose the logarithmic growth rate of the von Neumann entropy to be a natural extension of the information dimension to dissipative quantum systems. We corroborate our results by comparing to numerically exact simulations.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084590234 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Computer simulation Crossovers Economic models Entropy Random walk Random walk theory |
title | Information Dimension of Dissipative Quantum Walks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Information%20Dimension%20of%20Dissipative%20Quantum%20Walks&rft.jtitle=arXiv.org&rft.au=Schijven,%20P&rft.date=2014-08-13&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084590234%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20845902343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084590234&rft_id=info:pmid/&rfr_iscdi=true |