Loading…
Instability in a minimal bimetric gravity model
We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to offer an alternative to the standard cosmological model at background level. For small redshifts, its equation of state is \(w(z)\approx-1.22_{-0.02}^{+0.02}-0.64_{-0.04}^{+0.05}z/(1+z)\). Just like...
Saved in:
Published in: | arXiv.org 2014-08 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Könnig, Frank Amendola, Luca |
description | We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to offer an alternative to the standard cosmological model at background level. For small redshifts, its equation of state is \(w(z)\approx-1.22_{-0.02}^{+0.02}-0.64_{-0.04}^{+0.05}z/(1+z)\). Just like \(\Lambda\)CDM, it depends on a single parameter, has an analytical background expansion law and fits the expansion cosmological data well. However, confirming previous results, we find that the model is unstable at early times at small scales and speculate over possible ways to cure the instability. In the regime in which the model is stable, we find that it fits the linear perturbation observations well and has a growth index of approximately \(\gamma=0.47\). |
doi_str_mv | 10.48550/arxiv.1402.1988 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084726681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084726681</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-d070af6ba94c064d248136a0519f6426235319a89198f557111b5748124c98b3</originalsourceid><addsrcrecordid>eNotjklLA0EQhRtBMMTcPQ7kPJOq6v0owSUQyEHvoXqW0GEW7ZkE_feO6Okdvsf3nhAPCIVyWsOG01e8FqiACvTO3YgFSYm5U0R3YjWOZwAgY0lruRCbXT9OHGIbp-8s9hlnXexjx20WYldPKZbZKfH1l3ZDVbf34rbhdqxX_7kUb89P79vXfH942W0f9zlrxLwCC9yYwF6VYFRFyqE0DBp9YxQZklqiZ-fng43WFhGDtnOJVOldkEux_rN-pOHzUo_T8TxcUj8PHgmcsmTMLPwB3g1CFw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084726681</pqid></control><display><type>article</type><title>Instability in a minimal bimetric gravity model</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Könnig, Frank ; Amendola, Luca</creator><creatorcontrib>Könnig, Frank ; Amendola, Luca</creatorcontrib><description>We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to offer an alternative to the standard cosmological model at background level. For small redshifts, its equation of state is \(w(z)\approx-1.22_{-0.02}^{+0.02}-0.64_{-0.04}^{+0.05}z/(1+z)\). Just like \(\Lambda\)CDM, it depends on a single parameter, has an analytical background expansion law and fits the expansion cosmological data well. However, confirming previous results, we find that the model is unstable at early times at small scales and speculate over possible ways to cure the instability. In the regime in which the model is stable, we find that it fits the linear perturbation observations well and has a growth index of approximately \(\gamma=0.47\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1402.1988</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Astronomical models ; Cosmology ; Equations of state ; Gravitation ; Stability</subject><ispartof>arXiv.org, 2014-08</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084726681?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Könnig, Frank</creatorcontrib><creatorcontrib>Amendola, Luca</creatorcontrib><title>Instability in a minimal bimetric gravity model</title><title>arXiv.org</title><description>We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to offer an alternative to the standard cosmological model at background level. For small redshifts, its equation of state is \(w(z)\approx-1.22_{-0.02}^{+0.02}-0.64_{-0.04}^{+0.05}z/(1+z)\). Just like \(\Lambda\)CDM, it depends on a single parameter, has an analytical background expansion law and fits the expansion cosmological data well. However, confirming previous results, we find that the model is unstable at early times at small scales and speculate over possible ways to cure the instability. In the regime in which the model is stable, we find that it fits the linear perturbation observations well and has a growth index of approximately \(\gamma=0.47\).</description><subject>Astronomical models</subject><subject>Cosmology</subject><subject>Equations of state</subject><subject>Gravitation</subject><subject>Stability</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjklLA0EQhRtBMMTcPQ7kPJOq6v0owSUQyEHvoXqW0GEW7ZkE_feO6Okdvsf3nhAPCIVyWsOG01e8FqiACvTO3YgFSYm5U0R3YjWOZwAgY0lruRCbXT9OHGIbp-8s9hlnXexjx20WYldPKZbZKfH1l3ZDVbf34rbhdqxX_7kUb89P79vXfH942W0f9zlrxLwCC9yYwF6VYFRFyqE0DBp9YxQZklqiZ-fng43WFhGDtnOJVOldkEux_rN-pOHzUo_T8TxcUj8PHgmcsmTMLPwB3g1CFw</recordid><startdate>20140806</startdate><enddate>20140806</enddate><creator>Könnig, Frank</creator><creator>Amendola, Luca</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140806</creationdate><title>Instability in a minimal bimetric gravity model</title><author>Könnig, Frank ; Amendola, Luca</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-d070af6ba94c064d248136a0519f6426235319a89198f557111b5748124c98b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Astronomical models</topic><topic>Cosmology</topic><topic>Equations of state</topic><topic>Gravitation</topic><topic>Stability</topic><toplevel>online_resources</toplevel><creatorcontrib>Könnig, Frank</creatorcontrib><creatorcontrib>Amendola, Luca</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Könnig, Frank</au><au>Amendola, Luca</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Instability in a minimal bimetric gravity model</atitle><jtitle>arXiv.org</jtitle><date>2014-08-06</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We discuss in detail a particularly simple example of a bimetric massive gravity model which seems to offer an alternative to the standard cosmological model at background level. For small redshifts, its equation of state is \(w(z)\approx-1.22_{-0.02}^{+0.02}-0.64_{-0.04}^{+0.05}z/(1+z)\). Just like \(\Lambda\)CDM, it depends on a single parameter, has an analytical background expansion law and fits the expansion cosmological data well. However, confirming previous results, we find that the model is unstable at early times at small scales and speculate over possible ways to cure the instability. In the regime in which the model is stable, we find that it fits the linear perturbation observations well and has a growth index of approximately \(\gamma=0.47\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1402.1988</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084726681 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Astronomical models Cosmology Equations of state Gravitation Stability |
title | Instability in a minimal bimetric gravity model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Instability%20in%20a%20minimal%20bimetric%20gravity%20model&rft.jtitle=arXiv.org&rft.au=K%C3%B6nnig,%20Frank&rft.date=2014-08-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1402.1988&rft_dat=%3Cproquest%3E2084726681%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-d070af6ba94c064d248136a0519f6426235319a89198f557111b5748124c98b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084726681&rft_id=info:pmid/&rfr_iscdi=true |