Loading…

Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting

In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-rad...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-09
Main Authors: Betancor, J J, Fariña, J C, Ssnabria, A
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Betancor, J J
Fariña, J C
Ssnabria, A
description In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084882661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084882661</sourcerecordid><originalsourceid>FETCH-proquest_journals_20848826613</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBroU0fdi9KFy4Exa3E9lZT0qQmNxX_3oh-gKuBOTNnQgKWpklUZozNSGhtF8cxK9Ysz9OAjGeoURs6cumgob2TKEZuBEegdvDMcPltBynA2BXdC0QJT62b6MAlvGjrVI1CK8-4auhRX7WE0b95DZYKRe_eVYHpxccJiELdFmTacmkh_OWcLHfb06aKBqMfDixeOu2M8ujC4jIrS1YUSfrf6g19fU4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084882661</pqid></control><display><type>article</type><title>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</title><source>Publicly Available Content Database</source><creator>Betancor, J J ; Fariña, J C ; Ssnabria, A</creator><creatorcontrib>Betancor, J J ; Fariña, J C ; Ssnabria, A</creatorcontrib><description>In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Equivalence ; Multipliers ; Norms ; Operators ; Sobolev space</subject><ispartof>arXiv.org, 2014-09</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084882661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Betancor, J J</creatorcontrib><creatorcontrib>Fariña, J C</creatorcontrib><creatorcontrib>Ssnabria, A</creatorcontrib><title>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</title><title>arXiv.org</title><description>In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.</description><subject>Banach spaces</subject><subject>Equivalence</subject><subject>Multipliers</subject><subject>Norms</subject><subject>Operators</subject><subject>Sobolev space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBroU0fdi9KFy4Exa3E9lZT0qQmNxX_3oh-gKuBOTNnQgKWpklUZozNSGhtF8cxK9Ysz9OAjGeoURs6cumgob2TKEZuBEegdvDMcPltBynA2BXdC0QJT62b6MAlvGjrVI1CK8-4auhRX7WE0b95DZYKRe_eVYHpxccJiELdFmTacmkh_OWcLHfb06aKBqMfDixeOu2M8ujC4jIrS1YUSfrf6g19fU4I</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Betancor, J J</creator><creator>Fariña, J C</creator><creator>Ssnabria, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20140916</creationdate><title>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</title><author>Betancor, J J ; Fariña, J C ; Ssnabria, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20848826613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Banach spaces</topic><topic>Equivalence</topic><topic>Multipliers</topic><topic>Norms</topic><topic>Operators</topic><topic>Sobolev space</topic><toplevel>online_resources</toplevel><creatorcontrib>Betancor, J J</creatorcontrib><creatorcontrib>Fariña, J C</creatorcontrib><creatorcontrib>Ssnabria, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betancor, J J</au><au>Fariña, J C</au><au>Ssnabria, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</atitle><jtitle>arXiv.org</jtitle><date>2014-09-16</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-09
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084882661
source Publicly Available Content Database
subjects Banach spaces
Equivalence
Multipliers
Norms
Operators
Sobolev space
title Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Vector%20valued%20multivariate%20spectral%20multipliers,%20Littlewood-Paley%20functions,%20and%20Sobolev%20spaces%20in%20hte%20Hermite%20setting&rft.jtitle=arXiv.org&rft.au=Betancor,%20J%20J&rft.date=2014-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084882661%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20848826613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084882661&rft_id=info:pmid/&rfr_iscdi=true