Loading…
Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting
In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-rad...
Saved in:
Published in: | arXiv.org 2014-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Betancor, J J Fariña, J C Ssnabria, A |
description | In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084882661</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084882661</sourcerecordid><originalsourceid>FETCH-proquest_journals_20848826613</originalsourceid><addsrcrecordid>eNqNjMsKwjAURIMgWLT_EHBroU0fdi9KFy4Exa3E9lZT0qQmNxX_3oh-gKuBOTNnQgKWpklUZozNSGhtF8cxK9Ysz9OAjGeoURs6cumgob2TKEZuBEegdvDMcPltBynA2BXdC0QJT62b6MAlvGjrVI1CK8-4auhRX7WE0b95DZYKRe_eVYHpxccJiELdFmTacmkh_OWcLHfb06aKBqMfDixeOu2M8ujC4jIrS1YUSfrf6g19fU4I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084882661</pqid></control><display><type>article</type><title>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</title><source>Publicly Available Content Database</source><creator>Betancor, J J ; Fariña, J C ; Ssnabria, A</creator><creatorcontrib>Betancor, J J ; Fariña, J C ; Ssnabria, A</creatorcontrib><description>In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Banach spaces ; Equivalence ; Multipliers ; Norms ; Operators ; Sobolev space</subject><ispartof>arXiv.org, 2014-09</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084882661?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Betancor, J J</creatorcontrib><creatorcontrib>Fariña, J C</creatorcontrib><creatorcontrib>Ssnabria, A</creatorcontrib><title>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</title><title>arXiv.org</title><description>In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.</description><subject>Banach spaces</subject><subject>Equivalence</subject><subject>Multipliers</subject><subject>Norms</subject><subject>Operators</subject><subject>Sobolev space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjMsKwjAURIMgWLT_EHBroU0fdi9KFy4Exa3E9lZT0qQmNxX_3oh-gKuBOTNnQgKWpklUZozNSGhtF8cxK9Ysz9OAjGeoURs6cumgob2TKEZuBEegdvDMcPltBynA2BXdC0QJT62b6MAlvGjrVI1CK8-4auhRX7WE0b95DZYKRe_eVYHpxccJiELdFmTacmkh_OWcLHfb06aKBqMfDixeOu2M8ujC4jIrS1YUSfrf6g19fU4I</recordid><startdate>20140916</startdate><enddate>20140916</enddate><creator>Betancor, J J</creator><creator>Fariña, J C</creator><creator>Ssnabria, A</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope></search><sort><creationdate>20140916</creationdate><title>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</title><author>Betancor, J J ; Fariña, J C ; Ssnabria, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20848826613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Banach spaces</topic><topic>Equivalence</topic><topic>Multipliers</topic><topic>Norms</topic><topic>Operators</topic><topic>Sobolev space</topic><toplevel>online_resources</toplevel><creatorcontrib>Betancor, J J</creatorcontrib><creatorcontrib>Fariña, J C</creatorcontrib><creatorcontrib>Ssnabria, A</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Betancor, J J</au><au>Fariña, J C</au><au>Ssnabria, A</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting</atitle><jtitle>arXiv.org</jtitle><date>2014-09-16</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper we find new equivalent norms in \(L^p(\mathbb{R}^n,\mathbb{B})\) by using multivariate Littlewood-Paley functions associated with Poisson semigroup for the Hermite operator, provided that \(\mathbb{B}\) is a UMD Banach space with the property (\(\alpha\)). We make use of \(\gamma\)-radonifying operators to get new equivalent norms that allow us to obtain \(L^p(\mathbb{R}^n,\mathbb{B})\)-boundedness properties for (vector valued) multivariate spectral multipliers for Hermite operators. As application of this Hermite multiplier theorem we prove that the Banach valued Hermite Sobolev and potential spaces coincide.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-09 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084882661 |
source | Publicly Available Content Database |
subjects | Banach spaces Equivalence Multipliers Norms Operators Sobolev space |
title | Vector valued multivariate spectral multipliers, Littlewood-Paley functions, and Sobolev spaces in hte Hermite setting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A11%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Vector%20valued%20multivariate%20spectral%20multipliers,%20Littlewood-Paley%20functions,%20and%20Sobolev%20spaces%20in%20hte%20Hermite%20setting&rft.jtitle=arXiv.org&rft.au=Betancor,%20J%20J&rft.date=2014-09-16&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084882661%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20848826613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084882661&rft_id=info:pmid/&rfr_iscdi=true |