Loading…

Existence of positive solutions for a three-point integral boundary-value problem

In this paper, by using the Krasnosel'skii's fixed-point theorem, we study the existence of at least one or two positive solutions to the three-point integral boundary value problem {equation*} \label{eq-1} {gathered} {u^{\prime \prime}}(t)+a(t)f(u(t))=0,\ 0

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-08
Main Authors: Haddouchi, Faouzi, Benaicha, Slimane
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Haddouchi, Faouzi
Benaicha, Slimane
description In this paper, by using the Krasnosel'skii's fixed-point theorem, we study the existence of at least one or two positive solutions to the three-point integral boundary value problem {equation*} \label{eq-1} {gathered} {u^{\prime \prime}}(t)+a(t)f(u(t))=0,\ 0
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084882850</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084882850</sourcerecordid><originalsourceid>FETCH-proquest_journals_20848828503</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOA6EJNWs5eKW8G9pPqqKTGv5lP09nbhAVwMs5iZsUIqteG6knLByhh7IYTc7mRdq4KdmreNCf0VgToYKNpkR4RILidLPkJHAQykR0DkA1mfYALvwThoKfubCR8-GpcRhkCtw-eKzTvjIpY_L9n60Jz3Rz71V8aYLj3l4Kd0kUJXWktdC_Xf9QUahkA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084882850</pqid></control><display><type>article</type><title>Existence of positive solutions for a three-point integral boundary-value problem</title><source>Publicly Available Content Database</source><creator>Haddouchi, Faouzi ; Benaicha, Slimane</creator><creatorcontrib>Haddouchi, Faouzi ; Benaicha, Slimane</creatorcontrib><description><![CDATA[In this paper, by using the Krasnosel'skii's fixed-point theorem, we study the existence of at least one or two positive solutions to the three-point integral boundary value problem {equation*} \label{eq-1} {gathered} {u^{\prime \prime}}(t)+a(t)f(u(t))=0,\ 0<t<T, u(0)={\beta}u(\eta),\ u(T)={\alpha}\int_{0}^{\eta}u(s)ds, {gathered} {equation*} where \(0<{\eta}<T\), \(0<{\alpha}< \frac{2T}{{\eta}^{2}}\), \(0\leq{\beta}<\frac{2T-\alpha\eta^{2}}{\alpha\eta^{2}-2\eta+2T}\) are given constants.]]></description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Boundary value problems ; Existence theorems ; Fixed points (mathematics) ; Integrals</subject><ispartof>arXiv.org, 2014-08</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084882850?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Haddouchi, Faouzi</creatorcontrib><creatorcontrib>Benaicha, Slimane</creatorcontrib><title>Existence of positive solutions for a three-point integral boundary-value problem</title><title>arXiv.org</title><description><![CDATA[In this paper, by using the Krasnosel'skii's fixed-point theorem, we study the existence of at least one or two positive solutions to the three-point integral boundary value problem {equation*} \label{eq-1} {gathered} {u^{\prime \prime}}(t)+a(t)f(u(t))=0,\ 0<t<T, u(0)={\beta}u(\eta),\ u(T)={\alpha}\int_{0}^{\eta}u(s)ds, {gathered} {equation*} where \(0<{\eta}<T\), \(0<{\alpha}< \frac{2T}{{\eta}^{2}}\), \(0\leq{\beta}<\frac{2T-\alpha\eta^{2}}{\alpha\eta^{2}-2\eta+2T}\) are given constants.]]></description><subject>Boundary value problems</subject><subject>Existence theorems</subject><subject>Fixed points (mathematics)</subject><subject>Integrals</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOA6EJNWs5eKW8G9pPqqKTGv5lP09nbhAVwMs5iZsUIqteG6knLByhh7IYTc7mRdq4KdmreNCf0VgToYKNpkR4RILidLPkJHAQykR0DkA1mfYALvwThoKfubCR8-GpcRhkCtw-eKzTvjIpY_L9n60Jz3Rz71V8aYLj3l4Kd0kUJXWktdC_Xf9QUahkA8</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Haddouchi, Faouzi</creator><creator>Benaicha, Slimane</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140815</creationdate><title>Existence of positive solutions for a three-point integral boundary-value problem</title><author>Haddouchi, Faouzi ; Benaicha, Slimane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20848828503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundary value problems</topic><topic>Existence theorems</topic><topic>Fixed points (mathematics)</topic><topic>Integrals</topic><toplevel>online_resources</toplevel><creatorcontrib>Haddouchi, Faouzi</creatorcontrib><creatorcontrib>Benaicha, Slimane</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haddouchi, Faouzi</au><au>Benaicha, Slimane</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Existence of positive solutions for a three-point integral boundary-value problem</atitle><jtitle>arXiv.org</jtitle><date>2014-08-15</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract><![CDATA[In this paper, by using the Krasnosel'skii's fixed-point theorem, we study the existence of at least one or two positive solutions to the three-point integral boundary value problem {equation*} \label{eq-1} {gathered} {u^{\prime \prime}}(t)+a(t)f(u(t))=0,\ 0<t<T, u(0)={\beta}u(\eta),\ u(T)={\alpha}\int_{0}^{\eta}u(s)ds, {gathered} {equation*} where \(0<{\eta}<T\), \(0<{\alpha}< \frac{2T}{{\eta}^{2}}\), \(0\leq{\beta}<\frac{2T-\alpha\eta^{2}}{\alpha\eta^{2}-2\eta+2T}\) are given constants.]]></abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084882850
source Publicly Available Content Database
subjects Boundary value problems
Existence theorems
Fixed points (mathematics)
Integrals
title Existence of positive solutions for a three-point integral boundary-value problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T22%3A24%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Existence%20of%20positive%20solutions%20for%20a%20three-point%20integral%20boundary-value%20problem&rft.jtitle=arXiv.org&rft.au=Haddouchi,%20Faouzi&rft.date=2014-08-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084882850%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20848828503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084882850&rft_id=info:pmid/&rfr_iscdi=true