Loading…
Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality
We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain...
Saved in:
Published in: | Mathematische Nachrichten 2018-08, Vol.291 (11-12), p.1801-1814 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3 |
container_end_page | 1814 |
container_issue | 11-12 |
container_start_page | 1801 |
container_title | Mathematische Nachrichten |
container_volume | 291 |
creator | Kračmar, Stanislav Neustupa, Jiří |
description | We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy‐type estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary conditions. |
doi_str_mv | 10.1002/mana.201700228 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2084884081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084884081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEuXnytkS5xTbcRLnWFX8SRQOgMQt2joONaR2aztUuSFegTfkSXBbBEdOq1l9M9odhE4oGVJC2NkcDAwZoUUUTOygAc0YS1hO8100iLssyQR_2kcH3r8QQsqyyAfoY2Jr1WrzjG2Dw0zhzvigoO5x09pV3DjbPc8wYDkDY1SLVzpEaTC4oBstNbTYdmEDS2tqHbQ1eNpvsm7hTSv39f55H-yr8vgNnIY1EE3aqGUHrQ79EdproPXq-GceoseL84fxVXJzd3k9Ht0kMqWFSASVdVYLAmTKGPBS8CwT8dGsETJNc56rVLKcyVqAAkVkUbKmmCrGG55zmtfpITrd5i6cXXbKh-rFdi7e4itGBBeCE0EjNdxS0lnvnWqqhdNzcH1FSbXuuVr3XP32HA3l1rDSrer_oavJ6Hb05_0Gc9GE1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084884081</pqid></control><display><type>article</type><title>Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality</title><source>Wiley</source><creator>Kračmar, Stanislav ; Neustupa, Jiří</creator><creatorcontrib>Kračmar, Stanislav ; Neustupa, Jiří</creatorcontrib><description>We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy‐type estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary conditions.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201700228</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>35Q30 ; 65N30 ; 76D05 ; Boundary conditions ; Computational fluid dynamics ; Computer simulation ; Flow control ; Fluid flow ; Inequality ; Navier-Stokes equations ; Navier–Stokes equation ; Outflow ; Portfolio management ; Unsteady flow ; variational inequality ; Viscous fluids ; “do nothing” outflow boundary conditions</subject><ispartof>Mathematische Nachrichten, 2018-08, Vol.291 (11-12), p.1801-1814</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3</citedby><cites>FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kračmar, Stanislav</creatorcontrib><creatorcontrib>Neustupa, Jiří</creatorcontrib><title>Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality</title><title>Mathematische Nachrichten</title><description>We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy‐type estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary conditions.</description><subject>35Q30</subject><subject>65N30</subject><subject>76D05</subject><subject>Boundary conditions</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Flow control</subject><subject>Fluid flow</subject><subject>Inequality</subject><subject>Navier-Stokes equations</subject><subject>Navier–Stokes equation</subject><subject>Outflow</subject><subject>Portfolio management</subject><subject>Unsteady flow</subject><subject>variational inequality</subject><subject>Viscous fluids</subject><subject>“do nothing” outflow boundary conditions</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEuXnytkS5xTbcRLnWFX8SRQOgMQt2joONaR2aztUuSFegTfkSXBbBEdOq1l9M9odhE4oGVJC2NkcDAwZoUUUTOygAc0YS1hO8100iLssyQR_2kcH3r8QQsqyyAfoY2Jr1WrzjG2Dw0zhzvigoO5x09pV3DjbPc8wYDkDY1SLVzpEaTC4oBstNbTYdmEDS2tqHbQ1eNpvsm7hTSv39f55H-yr8vgNnIY1EE3aqGUHrQ79EdproPXq-GceoseL84fxVXJzd3k9Ht0kMqWFSASVdVYLAmTKGPBS8CwT8dGsETJNc56rVLKcyVqAAkVkUbKmmCrGG55zmtfpITrd5i6cXXbKh-rFdi7e4itGBBeCE0EjNdxS0lnvnWqqhdNzcH1FSbXuuVr3XP32HA3l1rDSrer_oavJ6Hb05_0Gc9GE1w</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Kračmar, Stanislav</creator><creator>Neustupa, Jiří</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201808</creationdate><title>Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality</title><author>Kračmar, Stanislav ; Neustupa, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>35Q30</topic><topic>65N30</topic><topic>76D05</topic><topic>Boundary conditions</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Flow control</topic><topic>Fluid flow</topic><topic>Inequality</topic><topic>Navier-Stokes equations</topic><topic>Navier–Stokes equation</topic><topic>Outflow</topic><topic>Portfolio management</topic><topic>Unsteady flow</topic><topic>variational inequality</topic><topic>Viscous fluids</topic><topic>“do nothing” outflow boundary conditions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kračmar, Stanislav</creatorcontrib><creatorcontrib>Neustupa, Jiří</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kračmar, Stanislav</au><au>Neustupa, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality</atitle><jtitle>Mathematische Nachrichten</jtitle><date>2018-08</date><risdate>2018</risdate><volume>291</volume><issue>11-12</issue><spage>1801</spage><epage>1814</epage><pages>1801-1814</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>We prove the global in time existence of a weak solution to the variational inequality of the Navier–Stokes type, simulating the unsteady flow of a viscous fluid through the channel, with the so‐called “do nothing” boundary condition on the outflow. The condition that the solution lies in a certain given, however arbitrarily large, convex set and the use of the variational inequality enables us to derive an energy‐type estimate of the solution. We also discuss the use of a series of other possible outflow “do nothing” boundary conditions.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mana.201700228</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2018-08, Vol.291 (11-12), p.1801-1814 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_2084884081 |
source | Wiley |
subjects | 35Q30 65N30 76D05 Boundary conditions Computational fluid dynamics Computer simulation Flow control Fluid flow Inequality Navier-Stokes equations Navier–Stokes equation Outflow Portfolio management Unsteady flow variational inequality Viscous fluids “do nothing” outflow boundary conditions |
title | Modeling of the unsteady flow through a channel with an artificial outflow condition by the Navier–Stokes variational inequality |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A24%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20the%20unsteady%20flow%20through%20a%20channel%20with%20an%20artificial%20outflow%20condition%20by%20the%20Navier%E2%80%93Stokes%20variational%20inequality&rft.jtitle=Mathematische%20Nachrichten&rft.au=Kra%C4%8Dmar,%20Stanislav&rft.date=2018-08&rft.volume=291&rft.issue=11-12&rft.spage=1801&rft.epage=1814&rft.pages=1801-1814&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201700228&rft_dat=%3Cproquest_cross%3E2084884081%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3178-81cd5d80a0b22a49845582285f8c33646e3c262cd8aeae0c792f7be24f46416d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084884081&rft_id=info:pmid/&rfr_iscdi=true |