Loading…
Universal de Sitter solutions at tree-level
Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de...
Saved in:
Published in: | arXiv.org 2010-03 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Danielsson, Ulf H Koerber, Paul Thomas Van Riet |
description | Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind. |
doi_str_mv | 10.48550/arxiv.1003.3590 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084886826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084886826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516-d4134c00e179da219f783a4634e3d08f892ea5a2f18d1071a3bc94dd30029df03</originalsourceid><addsrcrecordid>eNotjk1LAzEUAIMgWGrvHgMeJetLXpJNjlL8goIH67nE5gW2hF1Nsos_34Ke5jYzjN1I6LQzBu5D-RmWTgJgh8bDBVspRCmcVuqKbWo9AYCyvTIGV-zuYxwWKjVkHom_D61R4XXKcxumsfLQeCtEItNC-ZpdppArbf65Zvunx_32Rezenl-3DzsRjLQiaon6CECy9zEo6VPvMGiLmjCCS84rCiaoJF2U0MuAn0evY8TzlY8JcM1u_7RfZfqeqbbDaZrLeC4eFDjtnHXK4i8hlUI3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084886826</pqid></control><display><type>article</type><title>Universal de Sitter solutions at tree-level</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Danielsson, Ulf H ; Koerber, Paul ; Thomas Van Riet</creator><creatorcontrib>Danielsson, Ulf H ; Koerber, Paul ; Thomas Van Riet</creatorcontrib><description>Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1003.3590</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fluxes ; Manifolds (mathematics) ; String theory</subject><ispartof>arXiv.org, 2010-03</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084886826?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Danielsson, Ulf H</creatorcontrib><creatorcontrib>Koerber, Paul</creatorcontrib><creatorcontrib>Thomas Van Riet</creatorcontrib><title>Universal de Sitter solutions at tree-level</title><title>arXiv.org</title><description>Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.</description><subject>Fluxes</subject><subject>Manifolds (mathematics)</subject><subject>String theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEUAIMgWGrvHgMeJetLXpJNjlL8goIH67nE5gW2hF1Nsos_34Ke5jYzjN1I6LQzBu5D-RmWTgJgh8bDBVspRCmcVuqKbWo9AYCyvTIGV-zuYxwWKjVkHom_D61R4XXKcxumsfLQeCtEItNC-ZpdppArbf65Zvunx_32Rezenl-3DzsRjLQiaon6CECy9zEo6VPvMGiLmjCCS84rCiaoJF2U0MuAn0evY8TzlY8JcM1u_7RfZfqeqbbDaZrLeC4eFDjtnHXK4i8hlUI3</recordid><startdate>20100329</startdate><enddate>20100329</enddate><creator>Danielsson, Ulf H</creator><creator>Koerber, Paul</creator><creator>Thomas Van Riet</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100329</creationdate><title>Universal de Sitter solutions at tree-level</title><author>Danielsson, Ulf H ; Koerber, Paul ; Thomas Van Riet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516-d4134c00e179da219f783a4634e3d08f892ea5a2f18d1071a3bc94dd30029df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Fluxes</topic><topic>Manifolds (mathematics)</topic><topic>String theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Danielsson, Ulf H</creatorcontrib><creatorcontrib>Koerber, Paul</creatorcontrib><creatorcontrib>Thomas Van Riet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danielsson, Ulf H</au><au>Koerber, Paul</au><au>Thomas Van Riet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal de Sitter solutions at tree-level</atitle><jtitle>arXiv.org</jtitle><date>2010-03-29</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1003.3590</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2010-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2084886826 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Fluxes Manifolds (mathematics) String theory |
title | Universal de Sitter solutions at tree-level |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20de%20Sitter%20solutions%20at%20tree-level&rft.jtitle=arXiv.org&rft.au=Danielsson,%20Ulf%20H&rft.date=2010-03-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1003.3590&rft_dat=%3Cproquest%3E2084886826%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516-d4134c00e179da219f783a4634e3d08f892ea5a2f18d1071a3bc94dd30029df03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084886826&rft_id=info:pmid/&rfr_iscdi=true |