Loading…

Universal de Sitter solutions at tree-level

Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2010-03
Main Authors: Danielsson, Ulf H, Koerber, Paul, Thomas Van Riet
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Danielsson, Ulf H
Koerber, Paul
Thomas Van Riet
description Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.
doi_str_mv 10.48550/arxiv.1003.3590
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084886826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084886826</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516-d4134c00e179da219f783a4634e3d08f892ea5a2f18d1071a3bc94dd30029df03</originalsourceid><addsrcrecordid>eNotjk1LAzEUAIMgWGrvHgMeJetLXpJNjlL8goIH67nE5gW2hF1Nsos_34Ke5jYzjN1I6LQzBu5D-RmWTgJgh8bDBVspRCmcVuqKbWo9AYCyvTIGV-zuYxwWKjVkHom_D61R4XXKcxumsfLQeCtEItNC-ZpdppArbf65Zvunx_32Rezenl-3DzsRjLQiaon6CECy9zEo6VPvMGiLmjCCS84rCiaoJF2U0MuAn0evY8TzlY8JcM1u_7RfZfqeqbbDaZrLeC4eFDjtnHXK4i8hlUI3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084886826</pqid></control><display><type>article</type><title>Universal de Sitter solutions at tree-level</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Danielsson, Ulf H ; Koerber, Paul ; Thomas Van Riet</creator><creatorcontrib>Danielsson, Ulf H ; Koerber, Paul ; Thomas Van Riet</creatorcontrib><description>Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1003.3590</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Fluxes ; Manifolds (mathematics) ; String theory</subject><ispartof>arXiv.org, 2010-03</ispartof><rights>2010. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084886826?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Danielsson, Ulf H</creatorcontrib><creatorcontrib>Koerber, Paul</creatorcontrib><creatorcontrib>Thomas Van Riet</creatorcontrib><title>Universal de Sitter solutions at tree-level</title><title>arXiv.org</title><description>Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.</description><subject>Fluxes</subject><subject>Manifolds (mathematics)</subject><subject>String theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjk1LAzEUAIMgWGrvHgMeJetLXpJNjlL8goIH67nE5gW2hF1Nsos_34Ke5jYzjN1I6LQzBu5D-RmWTgJgh8bDBVspRCmcVuqKbWo9AYCyvTIGV-zuYxwWKjVkHom_D61R4XXKcxumsfLQeCtEItNC-ZpdppArbf65Zvunx_32Rezenl-3DzsRjLQiaon6CECy9zEo6VPvMGiLmjCCS84rCiaoJF2U0MuAn0evY8TzlY8JcM1u_7RfZfqeqbbDaZrLeC4eFDjtnHXK4i8hlUI3</recordid><startdate>20100329</startdate><enddate>20100329</enddate><creator>Danielsson, Ulf H</creator><creator>Koerber, Paul</creator><creator>Thomas Van Riet</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20100329</creationdate><title>Universal de Sitter solutions at tree-level</title><author>Danielsson, Ulf H ; Koerber, Paul ; Thomas Van Riet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516-d4134c00e179da219f783a4634e3d08f892ea5a2f18d1071a3bc94dd30029df03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Fluxes</topic><topic>Manifolds (mathematics)</topic><topic>String theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Danielsson, Ulf H</creatorcontrib><creatorcontrib>Koerber, Paul</creatorcontrib><creatorcontrib>Thomas Van Riet</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danielsson, Ulf H</au><au>Koerber, Paul</au><au>Thomas Van Riet</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal de Sitter solutions at tree-level</atitle><jtitle>arXiv.org</jtitle><date>2010-03-29</date><risdate>2010</risdate><eissn>2331-8422</eissn><abstract>Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1003.3590</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2010-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084886826
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Fluxes
Manifolds (mathematics)
String theory
title Universal de Sitter solutions at tree-level
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20de%20Sitter%20solutions%20at%20tree-level&rft.jtitle=arXiv.org&rft.au=Danielsson,%20Ulf%20H&rft.date=2010-03-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1003.3590&rft_dat=%3Cproquest%3E2084886826%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516-d4134c00e179da219f783a4634e3d08f892ea5a2f18d1071a3bc94dd30029df03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084886826&rft_id=info:pmid/&rfr_iscdi=true