Loading…

A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities

The asymptotic behavior of conformal metrics with negative curvatures near an isolated singularity for at most second order derivatives was described by Kraus and Roth in one of their papers in 2008. Our work improves one estimate of theirs and shows the estimate for higher order derivatives near an...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-04
Main Author: Zhang, Tanran
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Zhang, Tanran
description The asymptotic behavior of conformal metrics with negative curvatures near an isolated singularity for at most second order derivatives was described by Kraus and Roth in one of their papers in 2008. Our work improves one estimate of theirs and shows the estimate for higher order derivatives near an isolated singularity by means of potential theory. We also give some limits of Minda-type for SK-metrics near the origin. Combining these limits with the Ahlfors' lemma, we provide some observations SK-metrics.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2084926229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2084926229</sourcerecordid><originalsourceid>FETCH-proquest_journals_20849262293</originalsourceid><addsrcrecordid>eNqNiktqw1AMAB-FQkKbOwiyDrhyvstSWnKA7oPqyLES-ymV9Fx6-2TRA3Q1MDMPaYp1_bLYLhEnaeZ-rqoK1xtcreppurxC1mDQDNExkP8O19CQBr64o1HUQFtoNLdqA_UwcJg0Dj8SHWQ-UcjI0BQbKYqx3x0ZiGtPwUdwyafSk0kI-3N6bKl3nv3xKc0_3j_f9our6Xdhj8NZi-V7OmC1Xe5wjbir_3fdAMKQSig</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2084926229</pqid></control><display><type>article</type><title>A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities</title><source>Publicly Available Content Database</source><creator>Zhang, Tanran</creator><creatorcontrib>Zhang, Tanran</creatorcontrib><description>The asymptotic behavior of conformal metrics with negative curvatures near an isolated singularity for at most second order derivatives was described by Kraus and Roth in one of their papers in 2008. Our work improves one estimate of theirs and shows the estimate for higher order derivatives near an isolated singularity by means of potential theory. We also give some limits of Minda-type for SK-metrics near the origin. Combining these limits with the Ahlfors' lemma, we provide some observations SK-metrics.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic methods ; Asymptotic properties ; Derivatives ; Potential theory ; Singularities</subject><ispartof>arXiv.org, 2013-04</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2084926229?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Tanran</creatorcontrib><title>A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities</title><title>arXiv.org</title><description>The asymptotic behavior of conformal metrics with negative curvatures near an isolated singularity for at most second order derivatives was described by Kraus and Roth in one of their papers in 2008. Our work improves one estimate of theirs and shows the estimate for higher order derivatives near an isolated singularity by means of potential theory. We also give some limits of Minda-type for SK-metrics near the origin. Combining these limits with the Ahlfors' lemma, we provide some observations SK-metrics.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Derivatives</subject><subject>Potential theory</subject><subject>Singularities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNiktqw1AMAB-FQkKbOwiyDrhyvstSWnKA7oPqyLES-ymV9Fx6-2TRA3Q1MDMPaYp1_bLYLhEnaeZ-rqoK1xtcreppurxC1mDQDNExkP8O19CQBr64o1HUQFtoNLdqA_UwcJg0Dj8SHWQ-UcjI0BQbKYqx3x0ZiGtPwUdwyafSk0kI-3N6bKl3nv3xKc0_3j_f9our6Xdhj8NZi-V7OmC1Xe5wjbir_3fdAMKQSig</recordid><startdate>20130407</startdate><enddate>20130407</enddate><creator>Zhang, Tanran</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130407</creationdate><title>A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities</title><author>Zhang, Tanran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20849262293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Derivatives</topic><topic>Potential theory</topic><topic>Singularities</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Tanran</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Tanran</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities</atitle><jtitle>arXiv.org</jtitle><date>2013-04-07</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>The asymptotic behavior of conformal metrics with negative curvatures near an isolated singularity for at most second order derivatives was described by Kraus and Roth in one of their papers in 2008. Our work improves one estimate of theirs and shows the estimate for higher order derivatives near an isolated singularity by means of potential theory. We also give some limits of Minda-type for SK-metrics near the origin. Combining these limits with the Ahlfors' lemma, we provide some observations SK-metrics.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2084926229
source Publicly Available Content Database
subjects Asymptotic methods
Asymptotic properties
Derivatives
Potential theory
Singularities
title A note on the asymptotic behavior of conformal metrics with negative curvatures near isolated singularities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20note%20on%20the%20asymptotic%20behavior%20of%20conformal%20metrics%20with%20negative%20curvatures%20near%20isolated%20singularities&rft.jtitle=arXiv.org&rft.au=Zhang,%20Tanran&rft.date=2013-04-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2084926229%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20849262293%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2084926229&rft_id=info:pmid/&rfr_iscdi=true