Loading…
Comparison of several reweighted l1-algorithms for solving cardinality minimization problems
Reweighted l1-algorithms have attracted a lot of attention in the field of applied mathematics. A unified framework of such algorithms has been recently proposed by Zhao and Li. In this paper we construct a few new examples of reweighted l1-methods. These functions are certain concave approximations...
Saved in:
Published in: | arXiv.org 2013-04 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reweighted l1-algorithms have attracted a lot of attention in the field of applied mathematics. A unified framework of such algorithms has been recently proposed by Zhao and Li. In this paper we construct a few new examples of reweighted l1-methods. These functions are certain concave approximations of the l0-norm function. We focus on the numerical comparison between some new and existing reweighted l1-algorithms. We show how the change of parameters in reweighted algorithms may affect the performance of the algorithms for finding the solution of the cardinality minimization problem. In our experiments, the problem data were generated according to different statistical distributions, and we test the algorithms on different sparsity level of the solution of the problem. Our numerical results demonstrate that the reweighted l1-method is one of the efficient methods for locating the solution of the cardinality minimization problem. |
---|---|
ISSN: | 2331-8422 |