Loading…

Multi-Hypothesis Compressed Video Sensing Technique

In this paper, we present a compressive sampling and Multi-Hypothesis (MH) reconstruction strategy for video sequences which has a rather simple encoder, while the decoding system is not that complex. We introduce a convex cost function that incorporates the MH technique with the sparsity constraint...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-12
Main Authors: Azghani, Masoumeh, Karimi, Mostafa, Marvasti, Farokh
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Azghani, Masoumeh
Karimi, Mostafa
Marvasti, Farokh
description In this paper, we present a compressive sampling and Multi-Hypothesis (MH) reconstruction strategy for video sequences which has a rather simple encoder, while the decoding system is not that complex. We introduce a convex cost function that incorporates the MH technique with the sparsity constraint and the Tikhonov regularization. Consequently, we derive a new iterative algorithm based on these criteria. This algorithm surpasses its counterparts (Elasticnet and Tikhonov) in the recovery performance. Besides it is computationally much faster than the Elasticnet and comparable to the Tikhonov. Our extensive simulation results confirm these claims.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085006628</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085006628</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850066283</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9i3NKcnU9agsyC_JSC3OLFZwzs8tKEotLk5NUQjLTEnNVwhOzSvOzEtXCElNzsjLLCxN5WFgTUvMKU7lhdLcDMpuriHOHroFRflA6eKS-Kz80qI8oFS8kYGFqYGBmZmRhTFxqgA6rTRz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085006628</pqid></control><display><type>article</type><title>Multi-Hypothesis Compressed Video Sensing Technique</title><source>Publicly Available Content Database</source><creator>Azghani, Masoumeh ; Karimi, Mostafa ; Marvasti, Farokh</creator><creatorcontrib>Azghani, Masoumeh ; Karimi, Mostafa ; Marvasti, Farokh</creatorcontrib><description>In this paper, we present a compressive sampling and Multi-Hypothesis (MH) reconstruction strategy for video sequences which has a rather simple encoder, while the decoding system is not that complex. We introduce a convex cost function that incorporates the MH technique with the sparsity constraint and the Tikhonov regularization. Consequently, we derive a new iterative algorithm based on these criteria. This algorithm surpasses its counterparts (Elasticnet and Tikhonov) in the recovery performance. Besides it is computationally much faster than the Elasticnet and comparable to the Tikhonov. Our extensive simulation results confirm these claims.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Decoding ; Hypotheses ; Iterative algorithms ; Iterative methods ; Regularization ; Sequences ; Video compression</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085006628?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Azghani, Masoumeh</creatorcontrib><creatorcontrib>Karimi, Mostafa</creatorcontrib><creatorcontrib>Marvasti, Farokh</creatorcontrib><title>Multi-Hypothesis Compressed Video Sensing Technique</title><title>arXiv.org</title><description>In this paper, we present a compressive sampling and Multi-Hypothesis (MH) reconstruction strategy for video sequences which has a rather simple encoder, while the decoding system is not that complex. We introduce a convex cost function that incorporates the MH technique with the sparsity constraint and the Tikhonov regularization. Consequently, we derive a new iterative algorithm based on these criteria. This algorithm surpasses its counterparts (Elasticnet and Tikhonov) in the recovery performance. Besides it is computationally much faster than the Elasticnet and comparable to the Tikhonov. Our extensive simulation results confirm these claims.</description><subject>Computer simulation</subject><subject>Decoding</subject><subject>Hypotheses</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Regularization</subject><subject>Sequences</subject><subject>Video compression</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mQw9i3NKcnU9agsyC_JSC3OLFZwzs8tKEotLk5NUQjLTEnNVwhOzSvOzEtXCElNzsjLLCxN5WFgTUvMKU7lhdLcDMpuriHOHroFRflA6eKS-Kz80qI8oFS8kYGFqYGBmZmRhTFxqgA6rTRz</recordid><startdate>20141215</startdate><enddate>20141215</enddate><creator>Azghani, Masoumeh</creator><creator>Karimi, Mostafa</creator><creator>Marvasti, Farokh</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141215</creationdate><title>Multi-Hypothesis Compressed Video Sensing Technique</title><author>Azghani, Masoumeh ; Karimi, Mostafa ; Marvasti, Farokh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850066283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Computer simulation</topic><topic>Decoding</topic><topic>Hypotheses</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Regularization</topic><topic>Sequences</topic><topic>Video compression</topic><toplevel>online_resources</toplevel><creatorcontrib>Azghani, Masoumeh</creatorcontrib><creatorcontrib>Karimi, Mostafa</creatorcontrib><creatorcontrib>Marvasti, Farokh</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Azghani, Masoumeh</au><au>Karimi, Mostafa</au><au>Marvasti, Farokh</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multi-Hypothesis Compressed Video Sensing Technique</atitle><jtitle>arXiv.org</jtitle><date>2014-12-15</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper, we present a compressive sampling and Multi-Hypothesis (MH) reconstruction strategy for video sequences which has a rather simple encoder, while the decoding system is not that complex. We introduce a convex cost function that incorporates the MH technique with the sparsity constraint and the Tikhonov regularization. Consequently, we derive a new iterative algorithm based on these criteria. This algorithm surpasses its counterparts (Elasticnet and Tikhonov) in the recovery performance. Besides it is computationally much faster than the Elasticnet and comparable to the Tikhonov. Our extensive simulation results confirm these claims.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085006628
source Publicly Available Content Database
subjects Computer simulation
Decoding
Hypotheses
Iterative algorithms
Iterative methods
Regularization
Sequences
Video compression
title Multi-Hypothesis Compressed Video Sensing Technique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multi-Hypothesis%20Compressed%20Video%20Sensing%20Technique&rft.jtitle=arXiv.org&rft.au=Azghani,%20Masoumeh&rft.date=2014-12-15&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085006628%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20850066283%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085006628&rft_id=info:pmid/&rfr_iscdi=true