Loading…

An asymptotic optimality result for the multiclass queue with finite buffers in heavy traffic

For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-12
Main Authors: Atar, Rami, Shifrin, Mark
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Atar, Rami
Shifrin, Mark
description For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from the Harrison-Taksar free boundary problem, but otherwise depends "explicitly" on the problem data. The c mu priority rule is also used by the policy, but in a way that is novel, and, in particular, different than that used in problems with infinite buffers. We also address an analogous problem where buffer constraints are replaced by throughput time constraints.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085043062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085043062</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850430623</originalsourceid><addsrcrecordid>eNqNjEEKwjAQRYMgWLR3GHBdiElbuxVRPIBbKbEkdErb1MxE6e3twgO4-jze469EorQ-ZFWu1EakRJ2UUpVHVRQ6EY_TCIbmYWLP2ICfGAfTI88QLMWewfkA3FoYFsCmN0TwijZa-CC34HBEtvCMztlAgCO01rxn4GCcw2Yn1s70ZNPfbsX-ermfb9kU_PJCXHc-hnFRtZJVIXMtS6X_q76OTkSO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085043062</pqid></control><display><type>article</type><title>An asymptotic optimality result for the multiclass queue with finite buffers in heavy traffic</title><source>Publicly Available Content Database</source><creator>Atar, Rami ; Shifrin, Mark</creator><creatorcontrib>Atar, Rami ; Shifrin, Mark</creatorcontrib><description>For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from the Harrison-Taksar free boundary problem, but otherwise depends "explicitly" on the problem data. The c mu priority rule is also used by the policy, but in a way that is novel, and, in particular, different than that used in problems with infinite buffers. We also address an analogous problem where buffer constraints are replaced by throughput time constraints.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Buffers ; Construction costs ; Free boundaries ; Optimization ; Queues ; Queuing theory</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085043062?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Atar, Rami</creatorcontrib><creatorcontrib>Shifrin, Mark</creatorcontrib><title>An asymptotic optimality result for the multiclass queue with finite buffers in heavy traffic</title><title>arXiv.org</title><description>For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from the Harrison-Taksar free boundary problem, but otherwise depends "explicitly" on the problem data. The c mu priority rule is also used by the policy, but in a way that is novel, and, in particular, different than that used in problems with infinite buffers. We also address an analogous problem where buffer constraints are replaced by throughput time constraints.</description><subject>Asymptotic properties</subject><subject>Buffers</subject><subject>Construction costs</subject><subject>Free boundaries</subject><subject>Optimization</subject><subject>Queues</subject><subject>Queuing theory</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEEKwjAQRYMgWLR3GHBdiElbuxVRPIBbKbEkdErb1MxE6e3twgO4-jze469EorQ-ZFWu1EakRJ2UUpVHVRQ6EY_TCIbmYWLP2ICfGAfTI88QLMWewfkA3FoYFsCmN0TwijZa-CC34HBEtvCMztlAgCO01rxn4GCcw2Yn1s70ZNPfbsX-ermfb9kU_PJCXHc-hnFRtZJVIXMtS6X_q76OTkSO</recordid><startdate>20141221</startdate><enddate>20141221</enddate><creator>Atar, Rami</creator><creator>Shifrin, Mark</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141221</creationdate><title>An asymptotic optimality result for the multiclass queue with finite buffers in heavy traffic</title><author>Atar, Rami ; Shifrin, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850430623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Buffers</topic><topic>Construction costs</topic><topic>Free boundaries</topic><topic>Optimization</topic><topic>Queues</topic><topic>Queuing theory</topic><toplevel>online_resources</toplevel><creatorcontrib>Atar, Rami</creatorcontrib><creatorcontrib>Shifrin, Mark</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atar, Rami</au><au>Shifrin, Mark</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>An asymptotic optimality result for the multiclass queue with finite buffers in heavy traffic</atitle><jtitle>arXiv.org</jtitle><date>2014-12-21</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>For a multiclass G/G/1 queue with finite buffers, admission and scheduling control, and holding and rejection costs, we construct a policy that is asymptotically optimal in the heavy traffic limit. The policy is specified in terms of a single parameter which constitutes the free boundary point from the Harrison-Taksar free boundary problem, but otherwise depends "explicitly" on the problem data. The c mu priority rule is also used by the policy, but in a way that is novel, and, in particular, different than that used in problems with infinite buffers. We also address an analogous problem where buffer constraints are replaced by throughput time constraints.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085043062
source Publicly Available Content Database
subjects Asymptotic properties
Buffers
Construction costs
Free boundaries
Optimization
Queues
Queuing theory
title An asymptotic optimality result for the multiclass queue with finite buffers in heavy traffic
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A05%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=An%20asymptotic%20optimality%20result%20for%20the%20multiclass%20queue%20with%20finite%20buffers%20in%20heavy%20traffic&rft.jtitle=arXiv.org&rft.au=Atar,%20Rami&rft.date=2014-12-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085043062%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20850430623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085043062&rft_id=info:pmid/&rfr_iscdi=true