Loading…
Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra
In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups ca...
Saved in:
Published in: | arXiv.org 2014-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Fan, Feifei Zheng, Qibing |
description | In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085061779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085061779</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850617793</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5HQZd6qDMLV_qGkWHqKDuMmzqZPO_Ni389kX0ATo9h98zQh5lLAqyFaUT5DvXEEJoktI4Zh46X6U2ShaSK7woYFmDFqCgGnBloTdug0_ihS_hMcRf0mBNLZ3Gsn1yK3nbOQwlNqCGWtwtn6FxyZUT_q9TNN_vbttDYCw8euG6vIHeth_KKclikkRpumb_XW8D9D6K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085061779</pqid></control><display><type>article</type><title>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</title><source>Publicly Available Content (ProQuest)</source><creator>Fan, Feifei ; Zheng, Qibing</creator><creatorcontrib>Fan, Feifei ; Zheng, Qibing</creatorcontrib><description>In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Invariants ; Polyhedra ; Topology</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085061779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Fan, Feifei</creatorcontrib><creatorcontrib>Zheng, Qibing</creatorcontrib><title>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</title><title>arXiv.org</title><description>In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.</description><subject>Homology</subject><subject>Invariants</subject><subject>Polyhedra</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk0LgjAcgPERBEn5HQZd6qDMLV_qGkWHqKDuMmzqZPO_Ni389kX0ATo9h98zQh5lLAqyFaUT5DvXEEJoktI4Zh46X6U2ShaSK7woYFmDFqCgGnBloTdug0_ihS_hMcRf0mBNLZ3Gsn1yK3nbOQwlNqCGWtwtn6FxyZUT_q9TNN_vbttDYCw8euG6vIHeth_KKclikkRpumb_XW8D9D6K</recordid><startdate>20141229</startdate><enddate>20141229</enddate><creator>Fan, Feifei</creator><creator>Zheng, Qibing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141229</creationdate><title>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</title><author>Fan, Feifei ; Zheng, Qibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850617793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Homology</topic><topic>Invariants</topic><topic>Polyhedra</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Feifei</creatorcontrib><creatorcontrib>Zheng, Qibing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Feifei</au><au>Zheng, Qibing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</atitle><jtitle>arXiv.org</jtitle><date>2014-12-29</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085061779 |
source | Publicly Available Content (ProQuest) |
subjects | Homology Invariants Polyhedra Topology |
title | Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simplicial%20(co)homeology%20groups:%20New%20P.L.%20homeomorphism%20invariants%20of%20polyhedra&rft.jtitle=arXiv.org&rft.au=Fan,%20Feifei&rft.date=2014-12-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085061779%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20850617793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085061779&rft_id=info:pmid/&rfr_iscdi=true |