Loading…

Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra

In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups ca...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-12
Main Authors: Fan, Feifei, Zheng, Qibing
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Fan, Feifei
Zheng, Qibing
description In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085061779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085061779</sourcerecordid><originalsourceid>FETCH-proquest_journals_20850617793</originalsourceid><addsrcrecordid>eNqNyk0LgjAcgPERBEn5HQZd6qDMLV_qGkWHqKDuMmzqZPO_Ni389kX0ATo9h98zQh5lLAqyFaUT5DvXEEJoktI4Zh46X6U2ShaSK7woYFmDFqCgGnBloTdug0_ihS_hMcRf0mBNLZ3Gsn1yK3nbOQwlNqCGWtwtn6FxyZUT_q9TNN_vbttDYCw8euG6vIHeth_KKclikkRpumb_XW8D9D6K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085061779</pqid></control><display><type>article</type><title>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</title><source>Publicly Available Content (ProQuest)</source><creator>Fan, Feifei ; Zheng, Qibing</creator><creatorcontrib>Fan, Feifei ; Zheng, Qibing</creatorcontrib><description>In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Homology ; Invariants ; Polyhedra ; Topology</subject><ispartof>arXiv.org, 2014-12</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085061779?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,37011,44589</link.rule.ids></links><search><creatorcontrib>Fan, Feifei</creatorcontrib><creatorcontrib>Zheng, Qibing</creatorcontrib><title>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</title><title>arXiv.org</title><description>In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.</description><subject>Homology</subject><subject>Invariants</subject><subject>Polyhedra</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyk0LgjAcgPERBEn5HQZd6qDMLV_qGkWHqKDuMmzqZPO_Ni389kX0ATo9h98zQh5lLAqyFaUT5DvXEEJoktI4Zh46X6U2ShaSK7woYFmDFqCgGnBloTdug0_ihS_hMcRf0mBNLZ3Gsn1yK3nbOQwlNqCGWtwtn6FxyZUT_q9TNN_vbttDYCw8euG6vIHeth_KKclikkRpumb_XW8D9D6K</recordid><startdate>20141229</startdate><enddate>20141229</enddate><creator>Fan, Feifei</creator><creator>Zheng, Qibing</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141229</creationdate><title>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</title><author>Fan, Feifei ; Zheng, Qibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20850617793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Homology</topic><topic>Invariants</topic><topic>Polyhedra</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan, Feifei</creatorcontrib><creatorcontrib>Zheng, Qibing</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Feifei</au><au>Zheng, Qibing</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra</atitle><jtitle>arXiv.org</jtitle><date>2014-12-29</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>In this paper, we define (reduced) homeology groups and (reduced) cohomeology groups on finite simpicial complexes and prove that these groups are PL homeomorphsm invariants of polyhedra, while they are not homotopy invariants. So these groups can reflect some information that (co)homology groups can not tell. We also define homeotopy type of polyhedra which is finer than homotopy type but coarser than homeomorphism class, and prove that (co)homeology groups are actually homeotopy invariants. In the last section of this paper, we give a geometric description of some special (co)homeology groups.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085061779
source Publicly Available Content (ProQuest)
subjects Homology
Invariants
Polyhedra
Topology
title Simplicial (co)homeology groups: New P.L. homeomorphism invariants of polyhedra
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A39%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simplicial%20(co)homeology%20groups:%20New%20P.L.%20homeomorphism%20invariants%20of%20polyhedra&rft.jtitle=arXiv.org&rft.au=Fan,%20Feifei&rft.date=2014-12-29&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085061779%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20850617793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085061779&rft_id=info:pmid/&rfr_iscdi=true