Loading…

Dynamics and energetics of emergent magnetic monopoles in chiral magnets

The formation and destruction of topologically quantized magnetic whirls, so-called skyrmions, in chiral magnets is driven by the creation and motion of singular hedgehog defects. These can be identified with emergent magnetic monopoles and antimonopoles. We investigate how the energetics of and for...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-02
Main Authors: Schütte, Christoph, Rosch, Achim
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation and destruction of topologically quantized magnetic whirls, so-called skyrmions, in chiral magnets is driven by the creation and motion of singular hedgehog defects. These can be identified with emergent magnetic monopoles and antimonopoles. We investigate how the energetics of and forces between monopoles and antimonopoles influence their creation rate and dynamics. We study a single skyrmion line defect in the helical phase using both micromagnetic simulations and a Ginzburg-Landau analysis. Monopole-antimonople pairs are created in a thermally activated process, largely controlled by the (core) energy of the monopole. The force between monopoles and antimonopoles is linear in distance and described by a string tension. The sign and size of the string tension determines the stability of the phases and the velocity of the monopoles.
ISSN:2331-8422
DOI:10.48550/arxiv.1402.1721