Loading…

Weighted fourth moments of Hecke zeta functions with groessencharacters

We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{01\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cas...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-08
Main Author: Watt, Nigel
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Watt, Nigel
description We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{01\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085214401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085214401</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852144013</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC6kCatdi9qDyC4LCG-9KNNNO8VwdPbhQdwNYsZZiESpXWeVYVSK5ESDVJKtdurstSJOF-xbzvGG7gwRe5gDCN6JggOarR3hA-yATd5y33wBO9-jtoYkAi97Uw0ljHSRiydeRCmP67F9nS8HOrsGcNrQuJmmP9-Vo2SVanyopC5_q_6AlO2PFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085214401</pqid></control><display><type>article</type><title>Weighted fourth moments of Hecke zeta functions with groessencharacters</title><source>Publicly Available Content Database</source><creator>Watt, Nigel</creator><creatorcontrib>Watt, Nigel</creatorcontrib><description>We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{0&lt;|\mu|^2\leq M} A(\mu)\lambda^d((\mu)) |\mu|^{-2it}|^2 {\rm d}t\), where \(\lambda^d\) is the groessencharacter satisfying \(\lambda^d((\alpha)) = \lambda^d(\alpha{\Bbb Z}[i]) = (\alpha /|\alpha|)^{4d}\), for \(0\neq\alpha\in{\Bbb Z}[i]\), and \(\zeta(s,\lambda^d)\) is the Hecke zeta function that satisfies \(\zeta(s,\lambda^d) =(1/4)\sum_{0\neq\alpha\in{\Bbb Z}[i]} \lambda^d((\alpha)) |\alpha|^{-2s}\) for \(\Re(s)&gt;1\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gaussian distribution ; Sums</subject><ispartof>arXiv.org, 2013-08</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085214401?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Watt, Nigel</creatorcontrib><title>Weighted fourth moments of Hecke zeta functions with groessencharacters</title><title>arXiv.org</title><description>We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{0&lt;|\mu|^2\leq M} A(\mu)\lambda^d((\mu)) |\mu|^{-2it}|^2 {\rm d}t\), where \(\lambda^d\) is the groessencharacter satisfying \(\lambda^d((\alpha)) = \lambda^d(\alpha{\Bbb Z}[i]) = (\alpha /|\alpha|)^{4d}\), for \(0\neq\alpha\in{\Bbb Z}[i]\), and \(\zeta(s,\lambda^d)\) is the Hecke zeta function that satisfies \(\zeta(s,\lambda^d) =(1/4)\sum_{0\neq\alpha\in{\Bbb Z}[i]} \lambda^d((\alpha)) |\alpha|^{-2s}\) for \(\Re(s)&gt;1\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.</description><subject>Gaussian distribution</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC6kCatdi9qDyC4LCG-9KNNNO8VwdPbhQdwNYsZZiESpXWeVYVSK5ESDVJKtdurstSJOF-xbzvGG7gwRe5gDCN6JggOarR3hA-yATd5y33wBO9-jtoYkAi97Uw0ljHSRiydeRCmP67F9nS8HOrsGcNrQuJmmP9-Vo2SVanyopC5_q_6AlO2PFI</recordid><startdate>20130805</startdate><enddate>20130805</enddate><creator>Watt, Nigel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130805</creationdate><title>Weighted fourth moments of Hecke zeta functions with groessencharacters</title><author>Watt, Nigel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852144013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Gaussian distribution</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Watt, Nigel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watt, Nigel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Weighted fourth moments of Hecke zeta functions with groessencharacters</atitle><jtitle>arXiv.org</jtitle><date>2013-08-05</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{0&lt;|\mu|^2\leq M} A(\mu)\lambda^d((\mu)) |\mu|^{-2it}|^2 {\rm d}t\), where \(\lambda^d\) is the groessencharacter satisfying \(\lambda^d((\alpha)) = \lambda^d(\alpha{\Bbb Z}[i]) = (\alpha /|\alpha|)^{4d}\), for \(0\neq\alpha\in{\Bbb Z}[i]\), and \(\zeta(s,\lambda^d)\) is the Hecke zeta function that satisfies \(\zeta(s,\lambda^d) =(1/4)\sum_{0\neq\alpha\in{\Bbb Z}[i]} \lambda^d((\alpha)) |\alpha|^{-2s}\) for \(\Re(s)&gt;1\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085214401
source Publicly Available Content Database
subjects Gaussian distribution
Sums
title Weighted fourth moments of Hecke zeta functions with groessencharacters
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Weighted%20fourth%20moments%20of%20Hecke%20zeta%20functions%20with%20groessencharacters&rft.jtitle=arXiv.org&rft.au=Watt,%20Nigel&rft.date=2013-08-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085214401%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20852144013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085214401&rft_id=info:pmid/&rfr_iscdi=true