Loading…
Weighted fourth moments of Hecke zeta functions with groessencharacters
We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{01\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cas...
Saved in:
Published in: | arXiv.org 2013-08 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Watt, Nigel |
description | We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{01\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085214401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085214401</sourcerecordid><originalsourceid>FETCH-proquest_journals_20852144013</originalsourceid><addsrcrecordid>eNqNjEsKwjAUAIMgWLR3eOC6kCatdi9qDyC4LCG-9KNNNO8VwdPbhQdwNYsZZiESpXWeVYVSK5ESDVJKtdurstSJOF-xbzvGG7gwRe5gDCN6JggOarR3hA-yATd5y33wBO9-jtoYkAi97Uw0ljHSRiydeRCmP67F9nS8HOrsGcNrQuJmmP9-Vo2SVanyopC5_q_6AlO2PFI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085214401</pqid></control><display><type>article</type><title>Weighted fourth moments of Hecke zeta functions with groessencharacters</title><source>Publicly Available Content Database</source><creator>Watt, Nigel</creator><creatorcontrib>Watt, Nigel</creatorcontrib><description>We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{0<|\mu|^2\leq M} A(\mu)\lambda^d((\mu)) |\mu|^{-2it}|^2 {\rm d}t\), where \(\lambda^d\) is the groessencharacter satisfying \(\lambda^d((\alpha)) = \lambda^d(\alpha{\Bbb Z}[i]) = (\alpha /|\alpha|)^{4d}\), for \(0\neq\alpha\in{\Bbb Z}[i]\), and \(\zeta(s,\lambda^d)\) is the Hecke zeta function that satisfies \(\zeta(s,\lambda^d) =(1/4)\sum_{0\neq\alpha\in{\Bbb Z}[i]} \lambda^d((\alpha)) |\alpha|^{-2s}\) for \(\Re(s)>1\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Gaussian distribution ; Sums</subject><ispartof>arXiv.org, 2013-08</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085214401?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25732,36991,44569</link.rule.ids></links><search><creatorcontrib>Watt, Nigel</creatorcontrib><title>Weighted fourth moments of Hecke zeta functions with groessencharacters</title><title>arXiv.org</title><description>We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{0<|\mu|^2\leq M} A(\mu)\lambda^d((\mu)) |\mu|^{-2it}|^2 {\rm d}t\), where \(\lambda^d\) is the groessencharacter satisfying \(\lambda^d((\alpha)) = \lambda^d(\alpha{\Bbb Z}[i]) = (\alpha /|\alpha|)^{4d}\), for \(0\neq\alpha\in{\Bbb Z}[i]\), and \(\zeta(s,\lambda^d)\) is the Hecke zeta function that satisfies \(\zeta(s,\lambda^d) =(1/4)\sum_{0\neq\alpha\in{\Bbb Z}[i]} \lambda^d((\alpha)) |\alpha|^{-2s}\) for \(\Re(s)>1\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.</description><subject>Gaussian distribution</subject><subject>Sums</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNjEsKwjAUAIMgWLR3eOC6kCatdi9qDyC4LCG-9KNNNO8VwdPbhQdwNYsZZiESpXWeVYVSK5ESDVJKtdurstSJOF-xbzvGG7gwRe5gDCN6JggOarR3hA-yATd5y33wBO9-jtoYkAi97Uw0ljHSRiydeRCmP67F9nS8HOrsGcNrQuJmmP9-Vo2SVanyopC5_q_6AlO2PFI</recordid><startdate>20130805</startdate><enddate>20130805</enddate><creator>Watt, Nigel</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130805</creationdate><title>Weighted fourth moments of Hecke zeta functions with groessencharacters</title><author>Watt, Nigel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20852144013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Gaussian distribution</topic><topic>Sums</topic><toplevel>online_resources</toplevel><creatorcontrib>Watt, Nigel</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watt, Nigel</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Weighted fourth moments of Hecke zeta functions with groessencharacters</atitle><jtitle>arXiv.org</jtitle><date>2013-08-05</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We use recently obtained bounds for sums of Kloosterman sums to bound the sum \(\sum_{-D\leq d\leq D} \int_{-D}^D |\zeta(1/2+it,\lambda^d)|^4| \sum_{0<|\mu|^2\leq M} A(\mu)\lambda^d((\mu)) |\mu|^{-2it}|^2 {\rm d}t\), where \(\lambda^d\) is the groessencharacter satisfying \(\lambda^d((\alpha)) = \lambda^d(\alpha{\Bbb Z}[i]) = (\alpha /|\alpha|)^{4d}\), for \(0\neq\alpha\in{\Bbb Z}[i]\), and \(\zeta(s,\lambda^d)\) is the Hecke zeta function that satisfies \(\zeta(s,\lambda^d) =(1/4)\sum_{0\neq\alpha\in{\Bbb Z}[i]} \lambda^d((\alpha)) |\alpha|^{-2s}\) for \(\Re(s)>1\), while the numbers \(D,M\in(0,\infty)\) and function \(A:{\Bbb Z}[i]-\{0\}\rightarrow{\Bbb C}\) are arbitrary (though it is only in respect of cases in which \(M\) is relatively small, compared to \(D\), that our results are new and interesting). One of our new bounds may have an application in enabling a certain improvement of a result of P.A. Lewis on the distribution of Gaussian primes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085214401 |
source | Publicly Available Content Database |
subjects | Gaussian distribution Sums |
title | Weighted fourth moments of Hecke zeta functions with groessencharacters |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T17%3A27%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Weighted%20fourth%20moments%20of%20Hecke%20zeta%20functions%20with%20groessencharacters&rft.jtitle=arXiv.org&rft.au=Watt,%20Nigel&rft.date=2013-08-05&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085214401%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20852144013%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085214401&rft_id=info:pmid/&rfr_iscdi=true |