Loading…
Efficient, Tightly-Confined Trapping of 226Ra
We demonstrate a technique for transferring \(^{226}\)Ra atoms from a 3-dimensional magneto-optical-trap (MOT) into a standing wave optical dipole trap (ODT) in an adjacent chamber. The resulting small trapping volume (120 \(\mu\)m in diameter) allows for high control of the electric and magnetic fi...
Saved in:
Published in: | arXiv.org 2013-05 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Parker, R H Dietrich, M R Bailey, K Greene, J P Holt, R J Kalita, M R Korsch, W Z -T Lu Mueller, P O'Connor, T P Singh, J Sulai, I A Trimble, W L |
description | We demonstrate a technique for transferring \(^{226}\)Ra atoms from a 3-dimensional magneto-optical-trap (MOT) into a standing wave optical dipole trap (ODT) in an adjacent chamber. The resulting small trapping volume (120 \(\mu\)m in diameter) allows for high control of the electric and magnetic fields applied to the atoms. The atoms are first transferred to a traveling-wave optical dipole trap, which is then translated 46 cm to a science chamber. The atoms are subsequently transferred into an orthogonal standing-wave ODT by application of a 1-dimensional MOT along the traveling-wave axis. For each stage, transfer efficiencies exceeding 60% are demonstrated. |
doi_str_mv | 10.48550/arxiv.1305.7131 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085238361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085238361</sourcerecordid><originalsourceid>FETCH-LOGICAL-a511-849bbcb55fc3c8eb7ff6bac3d9e1deb4cedb37caab143dada8246ab854a3442c3</originalsourceid><addsrcrecordid>eNotzc1LwzAYgPEgCI65u8eCV1OT903S7ChlfsBAkN7Hm6-ZMdLadqL_vYo7Pbfnx9iNFLWyWot7Gr_yZy1R6LqRKC_YAhAltwrgiq2m6SCEANOA1rhgfJNS9jmW-a7q8v59Pn7zti8plxiqbqRhyGVf9akCMG90zS4THae4OnfJusdN1z7z7evTS_uw5aTln7R2zjutk0dvo2tSMo48hnWUITrlY3DYeCInFQYKZEEZclYrQqXA45Ld_m-Hsf84xWneHfrTWH7FHQirAS0aiT_LpEQa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085238361</pqid></control><display><type>article</type><title>Efficient, Tightly-Confined Trapping of 226Ra</title><source>Publicly Available Content Database</source><creator>Parker, R H ; Dietrich, M R ; Bailey, K ; Greene, J P ; Holt, R J ; Kalita, M R ; Korsch, W ; Z -T Lu ; Mueller, P ; O'Connor, T P ; Singh, J ; Sulai, I A ; Trimble, W L</creator><creatorcontrib>Parker, R H ; Dietrich, M R ; Bailey, K ; Greene, J P ; Holt, R J ; Kalita, M R ; Korsch, W ; Z -T Lu ; Mueller, P ; O'Connor, T P ; Singh, J ; Sulai, I A ; Trimble, W L</creatorcontrib><description>We demonstrate a technique for transferring \(^{226}\)Ra atoms from a 3-dimensional magneto-optical-trap (MOT) into a standing wave optical dipole trap (ODT) in an adjacent chamber. The resulting small trapping volume (120 \(\mu\)m in diameter) allows for high control of the electric and magnetic fields applied to the atoms. The atoms are first transferred to a traveling-wave optical dipole trap, which is then translated 46 cm to a science chamber. The atoms are subsequently transferred into an orthogonal standing-wave ODT by application of a 1-dimensional MOT along the traveling-wave axis. For each stage, transfer efficiencies exceeding 60% are demonstrated.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1305.7131</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Dipoles ; Radium 226 ; Standing waves ; Trapping</subject><ispartof>arXiv.org, 2013-05</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085238361?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Parker, R H</creatorcontrib><creatorcontrib>Dietrich, M R</creatorcontrib><creatorcontrib>Bailey, K</creatorcontrib><creatorcontrib>Greene, J P</creatorcontrib><creatorcontrib>Holt, R J</creatorcontrib><creatorcontrib>Kalita, M R</creatorcontrib><creatorcontrib>Korsch, W</creatorcontrib><creatorcontrib>Z -T Lu</creatorcontrib><creatorcontrib>Mueller, P</creatorcontrib><creatorcontrib>O'Connor, T P</creatorcontrib><creatorcontrib>Singh, J</creatorcontrib><creatorcontrib>Sulai, I A</creatorcontrib><creatorcontrib>Trimble, W L</creatorcontrib><title>Efficient, Tightly-Confined Trapping of 226Ra</title><title>arXiv.org</title><description>We demonstrate a technique for transferring \(^{226}\)Ra atoms from a 3-dimensional magneto-optical-trap (MOT) into a standing wave optical dipole trap (ODT) in an adjacent chamber. The resulting small trapping volume (120 \(\mu\)m in diameter) allows for high control of the electric and magnetic fields applied to the atoms. The atoms are first transferred to a traveling-wave optical dipole trap, which is then translated 46 cm to a science chamber. The atoms are subsequently transferred into an orthogonal standing-wave ODT by application of a 1-dimensional MOT along the traveling-wave axis. For each stage, transfer efficiencies exceeding 60% are demonstrated.</description><subject>Dipoles</subject><subject>Radium 226</subject><subject>Standing waves</subject><subject>Trapping</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzc1LwzAYgPEgCI65u8eCV1OT903S7ChlfsBAkN7Hm6-ZMdLadqL_vYo7Pbfnx9iNFLWyWot7Gr_yZy1R6LqRKC_YAhAltwrgiq2m6SCEANOA1rhgfJNS9jmW-a7q8v59Pn7zti8plxiqbqRhyGVf9akCMG90zS4THae4OnfJusdN1z7z7evTS_uw5aTln7R2zjutk0dvo2tSMo48hnWUITrlY3DYeCInFQYKZEEZclYrQqXA45Ld_m-Hsf84xWneHfrTWH7FHQirAS0aiT_LpEQa</recordid><startdate>20130530</startdate><enddate>20130530</enddate><creator>Parker, R H</creator><creator>Dietrich, M R</creator><creator>Bailey, K</creator><creator>Greene, J P</creator><creator>Holt, R J</creator><creator>Kalita, M R</creator><creator>Korsch, W</creator><creator>Z -T Lu</creator><creator>Mueller, P</creator><creator>O'Connor, T P</creator><creator>Singh, J</creator><creator>Sulai, I A</creator><creator>Trimble, W L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130530</creationdate><title>Efficient, Tightly-Confined Trapping of 226Ra</title><author>Parker, R H ; Dietrich, M R ; Bailey, K ; Greene, J P ; Holt, R J ; Kalita, M R ; Korsch, W ; Z -T Lu ; Mueller, P ; O'Connor, T P ; Singh, J ; Sulai, I A ; Trimble, W L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a511-849bbcb55fc3c8eb7ff6bac3d9e1deb4cedb37caab143dada8246ab854a3442c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Dipoles</topic><topic>Radium 226</topic><topic>Standing waves</topic><topic>Trapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Parker, R H</creatorcontrib><creatorcontrib>Dietrich, M R</creatorcontrib><creatorcontrib>Bailey, K</creatorcontrib><creatorcontrib>Greene, J P</creatorcontrib><creatorcontrib>Holt, R J</creatorcontrib><creatorcontrib>Kalita, M R</creatorcontrib><creatorcontrib>Korsch, W</creatorcontrib><creatorcontrib>Z -T Lu</creatorcontrib><creatorcontrib>Mueller, P</creatorcontrib><creatorcontrib>O'Connor, T P</creatorcontrib><creatorcontrib>Singh, J</creatorcontrib><creatorcontrib>Sulai, I A</creatorcontrib><creatorcontrib>Trimble, W L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parker, R H</au><au>Dietrich, M R</au><au>Bailey, K</au><au>Greene, J P</au><au>Holt, R J</au><au>Kalita, M R</au><au>Korsch, W</au><au>Z -T Lu</au><au>Mueller, P</au><au>O'Connor, T P</au><au>Singh, J</au><au>Sulai, I A</au><au>Trimble, W L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient, Tightly-Confined Trapping of 226Ra</atitle><jtitle>arXiv.org</jtitle><date>2013-05-30</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We demonstrate a technique for transferring \(^{226}\)Ra atoms from a 3-dimensional magneto-optical-trap (MOT) into a standing wave optical dipole trap (ODT) in an adjacent chamber. The resulting small trapping volume (120 \(\mu\)m in diameter) allows for high control of the electric and magnetic fields applied to the atoms. The atoms are first transferred to a traveling-wave optical dipole trap, which is then translated 46 cm to a science chamber. The atoms are subsequently transferred into an orthogonal standing-wave ODT by application of a 1-dimensional MOT along the traveling-wave axis. For each stage, transfer efficiencies exceeding 60% are demonstrated.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1305.7131</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085238361 |
source | Publicly Available Content Database |
subjects | Dipoles Radium 226 Standing waves Trapping |
title | Efficient, Tightly-Confined Trapping of 226Ra |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient,%20Tightly-Confined%20Trapping%20of%20226Ra&rft.jtitle=arXiv.org&rft.au=Parker,%20R%20H&rft.date=2013-05-30&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1305.7131&rft_dat=%3Cproquest%3E2085238361%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a511-849bbcb55fc3c8eb7ff6bac3d9e1deb4cedb37caab143dada8246ab854a3442c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085238361&rft_id=info:pmid/&rfr_iscdi=true |