Loading…
On deformations of multidimensional Poisson brackets of hydrodynamic type
The theory of Poisson Vertex Algebras (PVAs) is a good framework to treat Hamiltonian partial differential equations. A PVA consists of a pair \((\mathcal{A},\{\cdot_\lambda\cdot\})\) of a differential algebra \(\mathcal{A}\) and a bilinear operation called the \(\lambda\)-bracket. We extend the def...
Saved in:
Published in: | arXiv.org 2014-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Casati, Matteo |
description | The theory of Poisson Vertex Algebras (PVAs) is a good framework to treat Hamiltonian partial differential equations. A PVA consists of a pair \((\mathcal{A},\{\cdot_\lambda\cdot\})\) of a differential algebra \(\mathcal{A}\) and a bilinear operation called the \(\lambda\)-bracket. We extend the definition to the class of algebras \(\mathcal{A}\) endowed with \(d\geq1\) commuting derivations. We call this structure a \emph{multidimensional PVA}: it is a suitable setting to study Hamiltonian PDEs with \(d\) spatial dimensions. We apply this theory to the study of deformations of the Poisson brackets of hydrodynamic type for \(d=2\). |
doi_str_mv | 10.48550/arxiv.1312.1878 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085290395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085290395</sourcerecordid><originalsourceid>FETCH-LOGICAL-a515-4f8d42e0a5bd89dfebb658bdcb0973f74433e8ddf6b9dfdce0817e22b977c9813</originalsourceid><addsrcrecordid>eNotjs9rwyAcxWUwWOl631HYOZl-1ajHUfajUOgOvReNyuyS2Gkylv9-Ydvpwfs8PjyE7iipuRKCPJj8Hb9qyijUVEl1hVbAGK0UB7hBm1LOhBBoJAjBVmh3GLDzIeXejDENBaeA-6kbo4u9H8pSmQ6_pVhKGrDNpv3w4-_ofXY5uXkwfWzxOF_8LboOpit-859rdHx-Om5fq_3hZbd93FdGUFHxoBwHT4ywTmkXvLWNUNa1lmjJguScMa-cC41dqGs9UVR6AKulbLWibI3u_7SXnD4nX8bTOU15eVlOQJQATZgW7AdLzE-6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085290395</pqid></control><display><type>article</type><title>On deformations of multidimensional Poisson brackets of hydrodynamic type</title><source>Publicly Available Content Database</source><creator>Casati, Matteo</creator><creatorcontrib>Casati, Matteo</creatorcontrib><description>The theory of Poisson Vertex Algebras (PVAs) is a good framework to treat Hamiltonian partial differential equations. A PVA consists of a pair \((\mathcal{A},\{\cdot_\lambda\cdot\})\) of a differential algebra \(\mathcal{A}\) and a bilinear operation called the \(\lambda\)-bracket. We extend the definition to the class of algebras \(\mathcal{A}\) endowed with \(d\geq1\) commuting derivations. We call this structure a \emph{multidimensional PVA}: it is a suitable setting to study Hamiltonian PDEs with \(d\) spatial dimensions. We apply this theory to the study of deformations of the Poisson brackets of hydrodynamic type for \(d=2\).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1312.1878</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Brackets ; Deformation ; Partial differential equations</subject><ispartof>arXiv.org, 2014-11</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085290395?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Casati, Matteo</creatorcontrib><title>On deformations of multidimensional Poisson brackets of hydrodynamic type</title><title>arXiv.org</title><description>The theory of Poisson Vertex Algebras (PVAs) is a good framework to treat Hamiltonian partial differential equations. A PVA consists of a pair \((\mathcal{A},\{\cdot_\lambda\cdot\})\) of a differential algebra \(\mathcal{A}\) and a bilinear operation called the \(\lambda\)-bracket. We extend the definition to the class of algebras \(\mathcal{A}\) endowed with \(d\geq1\) commuting derivations. We call this structure a \emph{multidimensional PVA}: it is a suitable setting to study Hamiltonian PDEs with \(d\) spatial dimensions. We apply this theory to the study of deformations of the Poisson brackets of hydrodynamic type for \(d=2\).</description><subject>Algebra</subject><subject>Brackets</subject><subject>Deformation</subject><subject>Partial differential equations</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs9rwyAcxWUwWOl631HYOZl-1ajHUfajUOgOvReNyuyS2Gkylv9-Ydvpwfs8PjyE7iipuRKCPJj8Hb9qyijUVEl1hVbAGK0UB7hBm1LOhBBoJAjBVmh3GLDzIeXejDENBaeA-6kbo4u9H8pSmQ6_pVhKGrDNpv3w4-_ofXY5uXkwfWzxOF_8LboOpit-859rdHx-Om5fq_3hZbd93FdGUFHxoBwHT4ywTmkXvLWNUNa1lmjJguScMa-cC41dqGs9UVR6AKulbLWibI3u_7SXnD4nX8bTOU15eVlOQJQATZgW7AdLzE-6</recordid><startdate>20141128</startdate><enddate>20141128</enddate><creator>Casati, Matteo</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141128</creationdate><title>On deformations of multidimensional Poisson brackets of hydrodynamic type</title><author>Casati, Matteo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a515-4f8d42e0a5bd89dfebb658bdcb0973f74433e8ddf6b9dfdce0817e22b977c9813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Brackets</topic><topic>Deformation</topic><topic>Partial differential equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Casati, Matteo</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Casati, Matteo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On deformations of multidimensional Poisson brackets of hydrodynamic type</atitle><jtitle>arXiv.org</jtitle><date>2014-11-28</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>The theory of Poisson Vertex Algebras (PVAs) is a good framework to treat Hamiltonian partial differential equations. A PVA consists of a pair \((\mathcal{A},\{\cdot_\lambda\cdot\})\) of a differential algebra \(\mathcal{A}\) and a bilinear operation called the \(\lambda\)-bracket. We extend the definition to the class of algebras \(\mathcal{A}\) endowed with \(d\geq1\) commuting derivations. We call this structure a \emph{multidimensional PVA}: it is a suitable setting to study Hamiltonian PDEs with \(d\) spatial dimensions. We apply this theory to the study of deformations of the Poisson brackets of hydrodynamic type for \(d=2\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1312.1878</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085290395 |
source | Publicly Available Content Database |
subjects | Algebra Brackets Deformation Partial differential equations |
title | On deformations of multidimensional Poisson brackets of hydrodynamic type |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-31T23%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20deformations%20of%20multidimensional%20Poisson%20brackets%20of%20hydrodynamic%20type&rft.jtitle=arXiv.org&rft.au=Casati,%20Matteo&rft.date=2014-11-28&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1312.1878&rft_dat=%3Cproquest%3E2085290395%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a515-4f8d42e0a5bd89dfebb658bdcb0973f74433e8ddf6b9dfdce0817e22b977c9813%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085290395&rft_id=info:pmid/&rfr_iscdi=true |