Loading…

Parallelized event chain algorithm for dense hard sphere and polymer systems

We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensu...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2014-11
Main Authors: Kampmann, Tobias Alexander, Horst-Holger Boltz, Kierfeld, Jan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kampmann, Tobias Alexander
Horst-Holger Boltz
Kierfeld, Jan
description We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers.
doi_str_mv 10.48550/arxiv.1409.6948
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085394218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085394218</sourcerecordid><originalsourceid>FETCH-LOGICAL-a518-571cb9599e56ff06b6081cacf2d15362e646ed68562016673938b9ba02a81efc3</originalsourceid><addsrcrecordid>eNotzc1LwzAYgPEgCI65u8eA59Z8NznK8AsKeth9vG3e2I70w6Qbzr9ewZ2e2-8h5I6zUlmt2QOk7_5UcsVcaZyyV2QlpOSFVULckE3OB8aYMJXQWq5I_QEJYsTY_6CneMJxoW0H_Ughfk6pX7qBhilRj2NG2kHyNM8dJqQwejpP8TxgovmcFxzyLbkOEDNuLl2T3fPTbvta1O8vb9vHugDNbaEr3jZOO4fahMBMY5jlLbRBeK6lEWiUQW-sNoJxYyrppG1cA0yA5RhauSb3_-ycpq8j5mV_mI5p_DvuBbNaOiW4lb-U807V</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085394218</pqid></control><display><type>article</type><title>Parallelized event chain algorithm for dense hard sphere and polymer systems</title><source>ProQuest - Publicly Available Content Database</source><creator>Kampmann, Tobias Alexander ; Horst-Holger Boltz ; Kierfeld, Jan</creator><creatorcontrib>Kampmann, Tobias Alexander ; Horst-Holger Boltz ; Kierfeld, Jan</creatorcontrib><description>We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1409.6948</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Chain mobility ; Clusters ; Computer simulation ; Disk drives ; Parallel processing ; Polymers</subject><ispartof>arXiv.org, 2014-11</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085394218?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kampmann, Tobias Alexander</creatorcontrib><creatorcontrib>Horst-Holger Boltz</creatorcontrib><creatorcontrib>Kierfeld, Jan</creatorcontrib><title>Parallelized event chain algorithm for dense hard sphere and polymer systems</title><title>arXiv.org</title><description>We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers.</description><subject>Algorithms</subject><subject>Chain mobility</subject><subject>Clusters</subject><subject>Computer simulation</subject><subject>Disk drives</subject><subject>Parallel processing</subject><subject>Polymers</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotzc1LwzAYgPEgCI65u8eA59Z8NznK8AsKeth9vG3e2I70w6Qbzr9ewZ2e2-8h5I6zUlmt2QOk7_5UcsVcaZyyV2QlpOSFVULckE3OB8aYMJXQWq5I_QEJYsTY_6CneMJxoW0H_Ughfk6pX7qBhilRj2NG2kHyNM8dJqQwejpP8TxgovmcFxzyLbkOEDNuLl2T3fPTbvta1O8vb9vHugDNbaEr3jZOO4fahMBMY5jlLbRBeK6lEWiUQW-sNoJxYyrppG1cA0yA5RhauSb3_-ycpq8j5mV_mI5p_DvuBbNaOiW4lb-U807V</recordid><startdate>20141107</startdate><enddate>20141107</enddate><creator>Kampmann, Tobias Alexander</creator><creator>Horst-Holger Boltz</creator><creator>Kierfeld, Jan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141107</creationdate><title>Parallelized event chain algorithm for dense hard sphere and polymer systems</title><author>Kampmann, Tobias Alexander ; Horst-Holger Boltz ; Kierfeld, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a518-571cb9599e56ff06b6081cacf2d15362e646ed68562016673938b9ba02a81efc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Chain mobility</topic><topic>Clusters</topic><topic>Computer simulation</topic><topic>Disk drives</topic><topic>Parallel processing</topic><topic>Polymers</topic><toplevel>online_resources</toplevel><creatorcontrib>Kampmann, Tobias Alexander</creatorcontrib><creatorcontrib>Horst-Holger Boltz</creatorcontrib><creatorcontrib>Kierfeld, Jan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kampmann, Tobias Alexander</au><au>Horst-Holger Boltz</au><au>Kierfeld, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelized event chain algorithm for dense hard sphere and polymer systems</atitle><jtitle>arXiv.org</jtitle><date>2014-11-07</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>We combine parallelization and cluster Monte Carlo for hard sphere systems and present a parallelized event chain algorithm for the hard disk system in two dimensions. For parallelization we use a spatial partitioning approach into simulation cells. We find that it is crucial for correctness to ensure detailed balance on the level of Monte Carlo sweeps by drawing the starting sphere of event chains within each simulation cell with replacement. We analyze the performance gains for the parallelized event chain and find a criterion for an optimal degree of parallelization. Because of the cluster nature of event chain moves massive parallelization will not be optimal. Finally, we discuss first applications of the event chain algorithm to dense polymer systems, i.e., bundle-forming solutions of attractive semiflexible polymers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1409.6948</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2014-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085394218
source ProQuest - Publicly Available Content Database
subjects Algorithms
Chain mobility
Clusters
Computer simulation
Disk drives
Parallel processing
Polymers
title Parallelized event chain algorithm for dense hard sphere and polymer systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelized%20event%20chain%20algorithm%20for%20dense%20hard%20sphere%20and%20polymer%20systems&rft.jtitle=arXiv.org&rft.au=Kampmann,%20Tobias%20Alexander&rft.date=2014-11-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1409.6948&rft_dat=%3Cproquest%3E2085394218%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a518-571cb9599e56ff06b6081cacf2d15362e646ed68562016673938b9ba02a81efc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085394218&rft_id=info:pmid/&rfr_iscdi=true