Loading…
Leibniz-Dirac structures and nonconservative systems with constraints
Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural ge...
Saved in:
Published in: | arXiv.org 2013-03 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Çiftçi, Ünver |
description | Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural generalization of Dirac and Riemannian structures, for instance. From modeling point of view, Leibniz-Dirac structures make it easy to formulate implicit dissipative Hamiltonian systems. We give their exact characterization in terms of bundle maps from the tangent bundle to the cotangent bundle and vice verse. Physical systems which can be formulated in terms of Leibniz-Dirac structures are discussed. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085428165</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085428165</sourcerecordid><originalsourceid>FETCH-proquest_journals_20854281653</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScC-mlqd214uDoLrGemKKJ5i4VfXoVfACnf_j-kchA67JoKoCJyIl6pRTUCzBGZ6Ldojt49ypWLtpOEsfUcYpI0vqj9MF3wRPGwbIbUNKTGK8kH47P8iscrfNMMzE-2Qth_utUzNftbrkpbjHcExLv-5Ci_9AeVGMqaMra6P-uNxjtPEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085428165</pqid></control><display><type>article</type><title>Leibniz-Dirac structures and nonconservative systems with constraints</title><source>Publicly Available Content Database</source><creator>Çiftçi, Ünver</creator><creatorcontrib>Çiftçi, Ünver</creatorcontrib><description>Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural generalization of Dirac and Riemannian structures, for instance. From modeling point of view, Leibniz-Dirac structures make it easy to formulate implicit dissipative Hamiltonian systems. We give their exact characterization in terms of bundle maps from the tangent bundle to the cotangent bundle and vice verse. Physical systems which can be formulated in terms of Leibniz-Dirac structures are discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bundling ; Hamiltonian functions</subject><ispartof>arXiv.org, 2013-03</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085428165?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Çiftçi, Ünver</creatorcontrib><title>Leibniz-Dirac structures and nonconservative systems with constraints</title><title>arXiv.org</title><description>Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural generalization of Dirac and Riemannian structures, for instance. From modeling point of view, Leibniz-Dirac structures make it easy to formulate implicit dissipative Hamiltonian systems. We give their exact characterization in terms of bundle maps from the tangent bundle to the cotangent bundle and vice verse. Physical systems which can be formulated in terms of Leibniz-Dirac structures are discussed.</description><subject>Bundling</subject><subject>Hamiltonian functions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScC-mlqd214uDoLrGemKKJ5i4VfXoVfACnf_j-kchA67JoKoCJyIl6pRTUCzBGZ6Ldojt49ypWLtpOEsfUcYpI0vqj9MF3wRPGwbIbUNKTGK8kH47P8iscrfNMMzE-2Qth_utUzNftbrkpbjHcExLv-5Ci_9AeVGMqaMra6P-uNxjtPEA</recordid><startdate>20130304</startdate><enddate>20130304</enddate><creator>Çiftçi, Ünver</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20130304</creationdate><title>Leibniz-Dirac structures and nonconservative systems with constraints</title><author>Çiftçi, Ünver</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20854281653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Bundling</topic><topic>Hamiltonian functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Çiftçi, Ünver</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Çiftçi, Ünver</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leibniz-Dirac structures and nonconservative systems with constraints</atitle><jtitle>arXiv.org</jtitle><date>2013-03-04</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>Although conservative Hamiltonian systems with constraints can be formulated in terms of Dirac structures, a more general framework is necessary to cover also dissipative systems such as gradient and metriplectic systems with constraints. We define Leibniz-Dirac structures which lead to a natural generalization of Dirac and Riemannian structures, for instance. From modeling point of view, Leibniz-Dirac structures make it easy to formulate implicit dissipative Hamiltonian systems. We give their exact characterization in terms of bundle maps from the tangent bundle to the cotangent bundle and vice verse. Physical systems which can be formulated in terms of Leibniz-Dirac structures are discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085428165 |
source | Publicly Available Content Database |
subjects | Bundling Hamiltonian functions |
title | Leibniz-Dirac structures and nonconservative systems with constraints |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T12%3A50%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leibniz-Dirac%20structures%20and%20nonconservative%20systems%20with%20constraints&rft.jtitle=arXiv.org&rft.au=%C3%87ift%C3%A7i,%20%C3%9Cnver&rft.date=2013-03-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085428165%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20854281653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085428165&rft_id=info:pmid/&rfr_iscdi=true |