Loading…
The mixed problem in Lipschitz domains with general decompositions of the boundary
This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to...
Saved in:
Published in: | arXiv.org 2011-11 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Taylor, Justin L Ott, Katharine A Brown, Russell M |
description | This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0>1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces. |
doi_str_mv | 10.48550/arxiv.1111.1468 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085457403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085457403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a513-9efd25cf878493c5ec3b7fe1bc14f4b7a8cc4c8220ff3651c3b637481b4aaaa13</originalsourceid><addsrcrecordid>eNotjktLxDAYRYMgOIyzdxlw3Zpnk1nK4AsKgnQ_JOkXm6FtatPq6K83oHdzFwfOvQjdUFIKLSW5M_M5fJY0p6Si0hdowzinhRaMXaFdSidCCKsUk5Jv0FvTAR7CGVo8zdH2MOAw4jpMyXVh-cFtHEwYE_4KS4ffYYTZ9LgFF4cpprCEmFn0eMkWG9exNfP3Nbr0pk-w--8tah4fmsNzUb8-vRzu68JIyos9-JZJ57XSYs-dBMet8kCto8ILq4x2TjjNGPGeV5JmXHElNLXC5FC-Rbd_2vz7Y4W0HE9xnce8eGRESyGVIJz_Ag0AUjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085457403</pqid></control><display><type>article</type><title>The mixed problem in Lipschitz domains with general decompositions of the boundary</title><source>Publicly Available Content Database</source><creator>Taylor, Justin L ; Ott, Katharine A ; Brown, Russell M</creator><creatorcontrib>Taylor, Justin L ; Ott, Katharine A ; Brown, Russell M</creatorcontrib><description>This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0>1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1111.1468</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Dirichlet problem ; Domains ; Sobolev space</subject><ispartof>arXiv.org, 2011-11</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085457403?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Taylor, Justin L</creatorcontrib><creatorcontrib>Ott, Katharine A</creatorcontrib><creatorcontrib>Brown, Russell M</creatorcontrib><title>The mixed problem in Lipschitz domains with general decompositions of the boundary</title><title>arXiv.org</title><description>This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0>1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.</description><subject>Decomposition</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Sobolev space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLxDAYRYMgOIyzdxlw3Zpnk1nK4AsKgnQ_JOkXm6FtatPq6K83oHdzFwfOvQjdUFIKLSW5M_M5fJY0p6Si0hdowzinhRaMXaFdSidCCKsUk5Jv0FvTAR7CGVo8zdH2MOAw4jpMyXVh-cFtHEwYE_4KS4ffYYTZ9LgFF4cpprCEmFn0eMkWG9exNfP3Nbr0pk-w--8tah4fmsNzUb8-vRzu68JIyos9-JZJ57XSYs-dBMet8kCto8ILq4x2TjjNGPGeV5JmXHElNLXC5FC-Rbd_2vz7Y4W0HE9xnce8eGRESyGVIJz_Ag0AUjE</recordid><startdate>20111107</startdate><enddate>20111107</enddate><creator>Taylor, Justin L</creator><creator>Ott, Katharine A</creator><creator>Brown, Russell M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20111107</creationdate><title>The mixed problem in Lipschitz domains with general decompositions of the boundary</title><author>Taylor, Justin L ; Ott, Katharine A ; Brown, Russell M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a513-9efd25cf878493c5ec3b7fe1bc14f4b7a8cc4c8220ff3651c3b637481b4aaaa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decomposition</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Sobolev space</topic><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Justin L</creatorcontrib><creatorcontrib>Ott, Katharine A</creatorcontrib><creatorcontrib>Brown, Russell M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Justin L</au><au>Ott, Katharine A</au><au>Brown, Russell M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mixed problem in Lipschitz domains with general decompositions of the boundary</atitle><jtitle>arXiv.org</jtitle><date>2011-11-07</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0>1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1111.1468</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085457403 |
source | Publicly Available Content Database |
subjects | Decomposition Dirichlet problem Domains Sobolev space |
title | The mixed problem in Lipschitz domains with general decompositions of the boundary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mixed%20problem%20in%20Lipschitz%20domains%20with%20general%20decompositions%20of%20the%20boundary&rft.jtitle=arXiv.org&rft.au=Taylor,%20Justin%20L&rft.date=2011-11-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1111.1468&rft_dat=%3Cproquest%3E2085457403%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a513-9efd25cf878493c5ec3b7fe1bc14f4b7a8cc4c8220ff3651c3b637481b4aaaa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085457403&rft_id=info:pmid/&rfr_iscdi=true |