Loading…

The mixed problem in Lipschitz domains with general decompositions of the boundary

This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2011-11
Main Authors: Taylor, Justin L, Ott, Katharine A, Brown, Russell M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Taylor, Justin L
Ott, Katharine A
Brown, Russell M
description This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0>1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.
doi_str_mv 10.48550/arxiv.1111.1468
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085457403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085457403</sourcerecordid><originalsourceid>FETCH-LOGICAL-a513-9efd25cf878493c5ec3b7fe1bc14f4b7a8cc4c8220ff3651c3b637481b4aaaa13</originalsourceid><addsrcrecordid>eNotjktLxDAYRYMgOIyzdxlw3Zpnk1nK4AsKgnQ_JOkXm6FtatPq6K83oHdzFwfOvQjdUFIKLSW5M_M5fJY0p6Si0hdowzinhRaMXaFdSidCCKsUk5Jv0FvTAR7CGVo8zdH2MOAw4jpMyXVh-cFtHEwYE_4KS4ffYYTZ9LgFF4cpprCEmFn0eMkWG9exNfP3Nbr0pk-w--8tah4fmsNzUb8-vRzu68JIyos9-JZJ57XSYs-dBMet8kCto8ILq4x2TjjNGPGeV5JmXHElNLXC5FC-Rbd_2vz7Y4W0HE9xnce8eGRESyGVIJz_Ag0AUjE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085457403</pqid></control><display><type>article</type><title>The mixed problem in Lipschitz domains with general decompositions of the boundary</title><source>Publicly Available Content Database</source><creator>Taylor, Justin L ; Ott, Katharine A ; Brown, Russell M</creator><creatorcontrib>Taylor, Justin L ; Ott, Katharine A ; Brown, Russell M</creatorcontrib><description>This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0&gt;1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1111.1468</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decomposition ; Dirichlet problem ; Domains ; Sobolev space</subject><ispartof>arXiv.org, 2011-11</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085457403?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Taylor, Justin L</creatorcontrib><creatorcontrib>Ott, Katharine A</creatorcontrib><creatorcontrib>Brown, Russell M</creatorcontrib><title>The mixed problem in Lipschitz domains with general decompositions of the boundary</title><title>arXiv.org</title><description>This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0&gt;1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.</description><subject>Decomposition</subject><subject>Dirichlet problem</subject><subject>Domains</subject><subject>Sobolev space</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjktLxDAYRYMgOIyzdxlw3Zpnk1nK4AsKgnQ_JOkXm6FtatPq6K83oHdzFwfOvQjdUFIKLSW5M_M5fJY0p6Si0hdowzinhRaMXaFdSidCCKsUk5Jv0FvTAR7CGVo8zdH2MOAw4jpMyXVh-cFtHEwYE_4KS4ffYYTZ9LgFF4cpprCEmFn0eMkWG9exNfP3Nbr0pk-w--8tah4fmsNzUb8-vRzu68JIyos9-JZJ57XSYs-dBMet8kCto8ILq4x2TjjNGPGeV5JmXHElNLXC5FC-Rbd_2vz7Y4W0HE9xnce8eGRESyGVIJz_Ag0AUjE</recordid><startdate>20111107</startdate><enddate>20111107</enddate><creator>Taylor, Justin L</creator><creator>Ott, Katharine A</creator><creator>Brown, Russell M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20111107</creationdate><title>The mixed problem in Lipschitz domains with general decompositions of the boundary</title><author>Taylor, Justin L ; Ott, Katharine A ; Brown, Russell M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a513-9efd25cf878493c5ec3b7fe1bc14f4b7a8cc4c8220ff3651c3b637481b4aaaa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Decomposition</topic><topic>Dirichlet problem</topic><topic>Domains</topic><topic>Sobolev space</topic><toplevel>online_resources</toplevel><creatorcontrib>Taylor, Justin L</creatorcontrib><creatorcontrib>Ott, Katharine A</creatorcontrib><creatorcontrib>Brown, Russell M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylor, Justin L</au><au>Ott, Katharine A</au><au>Brown, Russell M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The mixed problem in Lipschitz domains with general decompositions of the boundary</atitle><jtitle>arXiv.org</jtitle><date>2011-11-07</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>This paper continues the study of the mixed problem for the Laplacian. We consider a bounded Lipschitz domain \(\Omega\subset \reals^n\), \(n\geq2\), with boundary that is decomposed as \(\partial\Omega=D\cup N\), \(D\) and \(N\) disjoint. We let \(\Lambda\) denote the boundary of \(D\) (relative to \(\partial\Omega\)) and impose conditions on the dimension and shape of \(\Lambda\) and the sets \(N\) and \(D\). Under these geometric criteria, we show that there exists \(p_0&gt;1\) depending on the domain \(\Omega\) such that for \(p\) in the interval \((1,p_0)\), the mixed problem with Neumann data in the space \(L^p(N)\) and Dirichlet data in the Sobolev space \(W^ {1,p}(D) \) has a unique solution with the non-tangential maximal function of the gradient of the solution in \(L^p(\partial\Omega)\). We also obtain results for \(p=1\) when the Dirichlet and Neumann data comes from Hardy spaces, and a result when the boundary data comes from weighted Sobolev spaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1111.1468</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2011-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085457403
source Publicly Available Content Database
subjects Decomposition
Dirichlet problem
Domains
Sobolev space
title The mixed problem in Lipschitz domains with general decompositions of the boundary
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20mixed%20problem%20in%20Lipschitz%20domains%20with%20general%20decompositions%20of%20the%20boundary&rft.jtitle=arXiv.org&rft.au=Taylor,%20Justin%20L&rft.date=2011-11-07&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1111.1468&rft_dat=%3Cproquest%3E2085457403%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a513-9efd25cf878493c5ec3b7fe1bc14f4b7a8cc4c8220ff3651c3b637481b4aaaa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085457403&rft_id=info:pmid/&rfr_iscdi=true