Loading…
Spectral Analysis and Identification of Noises in Quantum Systems
In quantum information processing, knowledge of the noise in the system is crucial for high-precision manipulation and tomography of coherent quantum operations. Existing strategies for identifying this noise require the use of additional quantum devices or control pulses. We present a noise-identif...
Saved in:
Published in: | arXiv.org 2012-11 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Re-Bing Wu Tie-Fu, Li Kofman, A G Zhang, Jing Yu-xi, Liu Pashkin, Yu A Jaw-Shen Tsai Nori, Franco |
description | In quantum information processing, knowledge of the noise in the system is crucial for high-precision manipulation and tomography of coherent quantum operations. Existing strategies for identifying this noise require the use of additional quantum devices or control pulses. We present a noise-identification method directly based on the system's non-Markovian response of an ensemble measurement to the noise. The noise spectrum is identified by reversing the response relationship in the frequency domain. For illustration, the method is applied to superconducting charge qubits, but it is equally applicable to any type of qubits. We find that the identification strategy recovers the well-known Fermi's golden rule under the lowest-order perturbation approximation, which corresponds to the Markovian limit when the measurement time is much longer than the noise correlation time. Beyond such approximation, it is possible to further improve the precision at the so-called optimal point by incorporating the transient response data in the non-Markovian regime. This method is verified with experimental data from coherent oscillations in a superconducting charge qubit. |
doi_str_mv | 10.48550/arxiv.1211.5186 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085469916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085469916</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516-b5ae9bb916e5209935f9032d5b54a93b565bb952b211fb484cbee92bab0f128c3</originalsourceid><addsrcrecordid>eNotjs9rwyAYQGUwWOl631HYOZl--jk9hrIfhdIx2nvRRMGSmi6asf73C2ynd3jweIQ8cFZLjcie7PgTv2sOnNfItbohCxCCV1oC3JFVzifGGKhnQBQL0uwvvi2j7WmTbH_NMVObOrrpfCoxxNaWOCQ6BLobYvaZxkQ_J5vKdKb7ay7-nO_JbbB99qt_Lsnh9eWwfq-2H2-bdbOtLHJVObTeOGe48gjMGIHBMAEdOpTWCIcKZ4vg5u3gpJat896As44FDroVS_L4l72Mw9fkczmehmmcn_MRmEapzNwWv4ANSvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085469916</pqid></control><display><type>article</type><title>Spectral Analysis and Identification of Noises in Quantum Systems</title><source>Publicly Available Content Database</source><creator>Re-Bing Wu ; Tie-Fu, Li ; Kofman, A G ; Zhang, Jing ; Yu-xi, Liu ; Pashkin, Yu A ; Jaw-Shen Tsai ; Nori, Franco</creator><creatorcontrib>Re-Bing Wu ; Tie-Fu, Li ; Kofman, A G ; Zhang, Jing ; Yu-xi, Liu ; Pashkin, Yu A ; Jaw-Shen Tsai ; Nori, Franco</creatorcontrib><description>In quantum information processing, knowledge of the noise in the system is crucial for high-precision manipulation and tomography of coherent quantum operations. Existing strategies for identifying this noise require the use of additional quantum devices or control pulses. We present a noise-identification method directly based on the system's non-Markovian response of an ensemble measurement to the noise. The noise spectrum is identified by reversing the response relationship in the frequency domain. For illustration, the method is applied to superconducting charge qubits, but it is equally applicable to any type of qubits. We find that the identification strategy recovers the well-known Fermi's golden rule under the lowest-order perturbation approximation, which corresponds to the Markovian limit when the measurement time is much longer than the noise correlation time. Beyond such approximation, it is possible to further improve the precision at the so-called optimal point by incorporating the transient response data in the non-Markovian regime. This method is verified with experimental data from coherent oscillations in a superconducting charge qubit.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1211.5186</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Approximation ; Data processing ; Markov processes ; Mathematical analysis ; Noise ; Noise measurement ; Quantum phenomena ; Quantum theory ; Qubits (quantum computing) ; Superconductivity</subject><ispartof>arXiv.org, 2012-11</ispartof><rights>2012. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085469916?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25733,27904,36991,44569</link.rule.ids></links><search><creatorcontrib>Re-Bing Wu</creatorcontrib><creatorcontrib>Tie-Fu, Li</creatorcontrib><creatorcontrib>Kofman, A G</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yu-xi, Liu</creatorcontrib><creatorcontrib>Pashkin, Yu A</creatorcontrib><creatorcontrib>Jaw-Shen Tsai</creatorcontrib><creatorcontrib>Nori, Franco</creatorcontrib><title>Spectral Analysis and Identification of Noises in Quantum Systems</title><title>arXiv.org</title><description>In quantum information processing, knowledge of the noise in the system is crucial for high-precision manipulation and tomography of coherent quantum operations. Existing strategies for identifying this noise require the use of additional quantum devices or control pulses. We present a noise-identification method directly based on the system's non-Markovian response of an ensemble measurement to the noise. The noise spectrum is identified by reversing the response relationship in the frequency domain. For illustration, the method is applied to superconducting charge qubits, but it is equally applicable to any type of qubits. We find that the identification strategy recovers the well-known Fermi's golden rule under the lowest-order perturbation approximation, which corresponds to the Markovian limit when the measurement time is much longer than the noise correlation time. Beyond such approximation, it is possible to further improve the precision at the so-called optimal point by incorporating the transient response data in the non-Markovian regime. This method is verified with experimental data from coherent oscillations in a superconducting charge qubit.</description><subject>Approximation</subject><subject>Data processing</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Noise</subject><subject>Noise measurement</subject><subject>Quantum phenomena</subject><subject>Quantum theory</subject><subject>Qubits (quantum computing)</subject><subject>Superconductivity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjs9rwyAYQGUwWOl631HYOZl--jk9hrIfhdIx2nvRRMGSmi6asf73C2ynd3jweIQ8cFZLjcie7PgTv2sOnNfItbohCxCCV1oC3JFVzifGGKhnQBQL0uwvvi2j7WmTbH_NMVObOrrpfCoxxNaWOCQ6BLobYvaZxkQ_J5vKdKb7ay7-nO_JbbB99qt_Lsnh9eWwfq-2H2-bdbOtLHJVObTeOGe48gjMGIHBMAEdOpTWCIcKZ4vg5u3gpJat896As44FDroVS_L4l72Mw9fkczmehmmcn_MRmEapzNwWv4ANSvI</recordid><startdate>20121126</startdate><enddate>20121126</enddate><creator>Re-Bing Wu</creator><creator>Tie-Fu, Li</creator><creator>Kofman, A G</creator><creator>Zhang, Jing</creator><creator>Yu-xi, Liu</creator><creator>Pashkin, Yu A</creator><creator>Jaw-Shen Tsai</creator><creator>Nori, Franco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20121126</creationdate><title>Spectral Analysis and Identification of Noises in Quantum Systems</title><author>Re-Bing Wu ; Tie-Fu, Li ; Kofman, A G ; Zhang, Jing ; Yu-xi, Liu ; Pashkin, Yu A ; Jaw-Shen Tsai ; Nori, Franco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516-b5ae9bb916e5209935f9032d5b54a93b565bb952b211fb484cbee92bab0f128c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Approximation</topic><topic>Data processing</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Noise</topic><topic>Noise measurement</topic><topic>Quantum phenomena</topic><topic>Quantum theory</topic><topic>Qubits (quantum computing)</topic><topic>Superconductivity</topic><toplevel>online_resources</toplevel><creatorcontrib>Re-Bing Wu</creatorcontrib><creatorcontrib>Tie-Fu, Li</creatorcontrib><creatorcontrib>Kofman, A G</creatorcontrib><creatorcontrib>Zhang, Jing</creatorcontrib><creatorcontrib>Yu-xi, Liu</creatorcontrib><creatorcontrib>Pashkin, Yu A</creatorcontrib><creatorcontrib>Jaw-Shen Tsai</creatorcontrib><creatorcontrib>Nori, Franco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Re-Bing Wu</au><au>Tie-Fu, Li</au><au>Kofman, A G</au><au>Zhang, Jing</au><au>Yu-xi, Liu</au><au>Pashkin, Yu A</au><au>Jaw-Shen Tsai</au><au>Nori, Franco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral Analysis and Identification of Noises in Quantum Systems</atitle><jtitle>arXiv.org</jtitle><date>2012-11-26</date><risdate>2012</risdate><eissn>2331-8422</eissn><abstract>In quantum information processing, knowledge of the noise in the system is crucial for high-precision manipulation and tomography of coherent quantum operations. Existing strategies for identifying this noise require the use of additional quantum devices or control pulses. We present a noise-identification method directly based on the system's non-Markovian response of an ensemble measurement to the noise. The noise spectrum is identified by reversing the response relationship in the frequency domain. For illustration, the method is applied to superconducting charge qubits, but it is equally applicable to any type of qubits. We find that the identification strategy recovers the well-known Fermi's golden rule under the lowest-order perturbation approximation, which corresponds to the Markovian limit when the measurement time is much longer than the noise correlation time. Beyond such approximation, it is possible to further improve the precision at the so-called optimal point by incorporating the transient response data in the non-Markovian regime. This method is verified with experimental data from coherent oscillations in a superconducting charge qubit.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1211.5186</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2012-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085469916 |
source | Publicly Available Content Database |
subjects | Approximation Data processing Markov processes Mathematical analysis Noise Noise measurement Quantum phenomena Quantum theory Qubits (quantum computing) Superconductivity |
title | Spectral Analysis and Identification of Noises in Quantum Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A43%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20Analysis%20and%20Identification%20of%20Noises%20in%20Quantum%20Systems&rft.jtitle=arXiv.org&rft.au=Re-Bing%20Wu&rft.date=2012-11-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1211.5186&rft_dat=%3Cproquest%3E2085469916%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516-b5ae9bb916e5209935f9032d5b54a93b565bb952b211fb484cbee92bab0f128c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085469916&rft_id=info:pmid/&rfr_iscdi=true |