Loading…
A Note on Braided \(T\)-categories over Monoidal Hom-Hopf Algebras
Let \( Aut_{mHH}(H)\) denote the set of all automorphisms of a monoidal Hopf algebra \(H\) with bijective antipode in the sense of Caenepeel and Goyvaerts \cite{CG2011}. The main aim of this paper is to provide new examples of braided \(T\)-category in the sense of Turaev \cite{T2008}. For this, fir...
Saved in:
Published in: | arXiv.org 2014-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | You, Miman Wang, Shuanhong |
description | Let \( Aut_{mHH}(H)\) denote the set of all automorphisms of a monoidal Hopf algebra \(H\) with bijective antipode in the sense of Caenepeel and Goyvaerts \cite{CG2011}. The main aim of this paper is to provide new examples of braided \(T\)-category in the sense of Turaev \cite{T2008}. For this, first we construct a monoidal Hom-Hopf \(T\)-coalgebra \(\mathcal{MHD}(H)\) and prove that the \(T\)-category \(Rep(\mathcal{MHD}(H))\) of representation of \(\mathcal{MHD}(H)\) is isomorphic to \(\mathcal {MHYD}(H)\) as braided \(T\)-categories, if \(H\) is finite-dimensional. Then we construct a new braided \(T\)-category \(\mathcal{ZMHYD}(H)\) over \(\mathbb{Z},\) generalizing the main construction by Staic \cite{S2007}. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085516183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085516183</sourcerecordid><originalsourceid>FETCH-proquest_journals_20855161833</originalsourceid><addsrcrecordid>eNqNyrEOgjAUQNHGxESi_MNLXHRoUlqLrGA0LDoxkpAqD1KCPGzB79fBD3C6w7kLFkilIp4cpFyx0PtOCCHjo9RaBSxL4UYTAg2QOWNrrKHcFeWeP8yELTmLHuiNDq40kK1NDzk9eU5jA2nf4t0Zv2HLxvQew1_XbHs5F6ecj45eM_qp6mh2w5cqKRKtozhKlPrv-gDNuzgS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085516183</pqid></control><display><type>article</type><title>A Note on Braided \(T\)-categories over Monoidal Hom-Hopf Algebras</title><source>Publicly Available Content Database</source><creator>You, Miman ; Wang, Shuanhong</creator><creatorcontrib>You, Miman ; Wang, Shuanhong</creatorcontrib><description>Let \( Aut_{mHH}(H)\) denote the set of all automorphisms of a monoidal Hopf algebra \(H\) with bijective antipode in the sense of Caenepeel and Goyvaerts \cite{CG2011}. The main aim of this paper is to provide new examples of braided \(T\)-category in the sense of Turaev \cite{T2008}. For this, first we construct a monoidal Hom-Hopf \(T\)-coalgebra \(\mathcal{MHD}(H)\) and prove that the \(T\)-category \(Rep(\mathcal{MHD}(H))\) of representation of \(\mathcal{MHD}(H)\) is isomorphic to \(\mathcal {MHYD}(H)\) as braided \(T\)-categories, if \(H\) is finite-dimensional. Then we construct a new braided \(T\)-category \(\mathcal{ZMHYD}(H)\) over \(\mathbb{Z},\) generalizing the main construction by Staic \cite{S2007}.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automorphisms ; Braiding</subject><ispartof>arXiv.org, 2014-11</ispartof><rights>2014. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085516183?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25734,36993,44571</link.rule.ids></links><search><creatorcontrib>You, Miman</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><title>A Note on Braided \(T\)-categories over Monoidal Hom-Hopf Algebras</title><title>arXiv.org</title><description>Let \( Aut_{mHH}(H)\) denote the set of all automorphisms of a monoidal Hopf algebra \(H\) with bijective antipode in the sense of Caenepeel and Goyvaerts \cite{CG2011}. The main aim of this paper is to provide new examples of braided \(T\)-category in the sense of Turaev \cite{T2008}. For this, first we construct a monoidal Hom-Hopf \(T\)-coalgebra \(\mathcal{MHD}(H)\) and prove that the \(T\)-category \(Rep(\mathcal{MHD}(H))\) of representation of \(\mathcal{MHD}(H)\) is isomorphic to \(\mathcal {MHYD}(H)\) as braided \(T\)-categories, if \(H\) is finite-dimensional. Then we construct a new braided \(T\)-category \(\mathcal{ZMHYD}(H)\) over \(\mathbb{Z},\) generalizing the main construction by Staic \cite{S2007}.</description><subject>Automorphisms</subject><subject>Braiding</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNyrEOgjAUQNHGxESi_MNLXHRoUlqLrGA0LDoxkpAqD1KCPGzB79fBD3C6w7kLFkilIp4cpFyx0PtOCCHjo9RaBSxL4UYTAg2QOWNrrKHcFeWeP8yELTmLHuiNDq40kK1NDzk9eU5jA2nf4t0Zv2HLxvQew1_XbHs5F6ecj45eM_qp6mh2w5cqKRKtozhKlPrv-gDNuzgS</recordid><startdate>20141124</startdate><enddate>20141124</enddate><creator>You, Miman</creator><creator>Wang, Shuanhong</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20141124</creationdate><title>A Note on Braided \(T\)-categories over Monoidal Hom-Hopf Algebras</title><author>You, Miman ; Wang, Shuanhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20855161833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Automorphisms</topic><topic>Braiding</topic><toplevel>online_resources</toplevel><creatorcontrib>You, Miman</creatorcontrib><creatorcontrib>Wang, Shuanhong</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Miman</au><au>Wang, Shuanhong</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Note on Braided \(T\)-categories over Monoidal Hom-Hopf Algebras</atitle><jtitle>arXiv.org</jtitle><date>2014-11-24</date><risdate>2014</risdate><eissn>2331-8422</eissn><abstract>Let \( Aut_{mHH}(H)\) denote the set of all automorphisms of a monoidal Hopf algebra \(H\) with bijective antipode in the sense of Caenepeel and Goyvaerts \cite{CG2011}. The main aim of this paper is to provide new examples of braided \(T\)-category in the sense of Turaev \cite{T2008}. For this, first we construct a monoidal Hom-Hopf \(T\)-coalgebra \(\mathcal{MHD}(H)\) and prove that the \(T\)-category \(Rep(\mathcal{MHD}(H))\) of representation of \(\mathcal{MHD}(H)\) is isomorphic to \(\mathcal {MHYD}(H)\) as braided \(T\)-categories, if \(H\) is finite-dimensional. Then we construct a new braided \(T\)-category \(\mathcal{ZMHYD}(H)\) over \(\mathbb{Z},\) generalizing the main construction by Staic \cite{S2007}.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2014-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085516183 |
source | Publicly Available Content Database |
subjects | Automorphisms Braiding |
title | A Note on Braided \(T\)-categories over Monoidal Hom-Hopf Algebras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A47%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Note%20on%20Braided%20%5C(T%5C)-categories%20over%20Monoidal%20Hom-Hopf%20Algebras&rft.jtitle=arXiv.org&rft.au=You,%20Miman&rft.date=2014-11-24&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085516183%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20855161833%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085516183&rft_id=info:pmid/&rfr_iscdi=true |