Loading…
Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples
Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the c...
Saved in:
Published in: | arXiv.org 2011-05 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Bogomolny, E Djellali, N Dubertrand, R Gozhyk, I Lebental, M Schmit, C Ulysse, C Zyss, J |
description | Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between the theoretical predictions, the numerical simulations, and experiments based on organic micro-lasers. |
doi_str_mv | 10.48550/arxiv.1009.5591 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085646196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085646196</sourcerecordid><originalsourceid>FETCH-LOGICAL-a516-534f531484889417dc1a3bf3eafc718501966c7501fd6aac8d8104b6aea60c2b3</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdBsNTuXQ64beq8M3EnxUegIEhWbsrNzJ2akiZxJin9-UZ0dTbnOx8hd5xtlNWaPUC8NOcNZ6zYaF3wK7IQUvLMKiFuyCqlI2NMmFxoLRfks4rgkIY-nqYWfkl9gy26MTaOOjg3Y4OJluUj_cDDrMQ1HRJOvs-absRDhLrFNYXOU_cF_TiP8AKnocV0S64DtAlX_1yS6uW52r5lu_fXcvu0y0Bzk2mpgpZcWWVtoXjuHQdZB4kQXM6tZrwwxuUzgzcAznrLmaoNIBjmRC2X5P4vO8T-e8I07o_9FLv5cS-Y1UaZuSB_AB2QU2Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085646196</pqid></control><display><type>article</type><title>Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples</title><source>Publicly Available Content Database</source><creator>Bogomolny, E ; Djellali, N ; Dubertrand, R ; Gozhyk, I ; Lebental, M ; Schmit, C ; Ulysse, C ; Zyss, J</creator><creatorcontrib>Bogomolny, E ; Djellali, N ; Dubertrand, R ; Gozhyk, I ; Lebental, M ; Schmit, C ; Ulysse, C ; Zyss, J</creatorcontrib><description>Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between the theoretical predictions, the numerical simulations, and experiments based on organic micro-lasers.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.1009.5591</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Computer simulation ; Holes ; Open systems ; Photonics</subject><ispartof>arXiv.org, 2011-05</ispartof><rights>2011. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085646196?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,27902,36989,44566</link.rule.ids></links><search><creatorcontrib>Bogomolny, E</creatorcontrib><creatorcontrib>Djellali, N</creatorcontrib><creatorcontrib>Dubertrand, R</creatorcontrib><creatorcontrib>Gozhyk, I</creatorcontrib><creatorcontrib>Lebental, M</creatorcontrib><creatorcontrib>Schmit, C</creatorcontrib><creatorcontrib>Ulysse, C</creatorcontrib><creatorcontrib>Zyss, J</creatorcontrib><title>Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples</title><title>arXiv.org</title><description>Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between the theoretical predictions, the numerical simulations, and experiments based on organic micro-lasers.</description><subject>Computer simulation</subject><subject>Holes</subject><subject>Open systems</subject><subject>Photonics</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUtLw0AURgdBsNTuXQ64beq8M3EnxUegIEhWbsrNzJ2akiZxJin9-UZ0dTbnOx8hd5xtlNWaPUC8NOcNZ6zYaF3wK7IQUvLMKiFuyCqlI2NMmFxoLRfks4rgkIY-nqYWfkl9gy26MTaOOjg3Y4OJluUj_cDDrMQ1HRJOvs-absRDhLrFNYXOU_cF_TiP8AKnocV0S64DtAlX_1yS6uW52r5lu_fXcvu0y0Bzk2mpgpZcWWVtoXjuHQdZB4kQXM6tZrwwxuUzgzcAznrLmaoNIBjmRC2X5P4vO8T-e8I07o_9FLv5cS-Y1UaZuSB_AB2QU2Y</recordid><startdate>20110525</startdate><enddate>20110525</enddate><creator>Bogomolny, E</creator><creator>Djellali, N</creator><creator>Dubertrand, R</creator><creator>Gozhyk, I</creator><creator>Lebental, M</creator><creator>Schmit, C</creator><creator>Ulysse, C</creator><creator>Zyss, J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20110525</creationdate><title>Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples</title><author>Bogomolny, E ; Djellali, N ; Dubertrand, R ; Gozhyk, I ; Lebental, M ; Schmit, C ; Ulysse, C ; Zyss, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a516-534f531484889417dc1a3bf3eafc718501966c7501fd6aac8d8104b6aea60c2b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Computer simulation</topic><topic>Holes</topic><topic>Open systems</topic><topic>Photonics</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogomolny, E</creatorcontrib><creatorcontrib>Djellali, N</creatorcontrib><creatorcontrib>Dubertrand, R</creatorcontrib><creatorcontrib>Gozhyk, I</creatorcontrib><creatorcontrib>Lebental, M</creatorcontrib><creatorcontrib>Schmit, C</creatorcontrib><creatorcontrib>Ulysse, C</creatorcontrib><creatorcontrib>Zyss, J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bogomolny, E</au><au>Djellali, N</au><au>Dubertrand, R</au><au>Gozhyk, I</au><au>Lebental, M</au><au>Schmit, C</au><au>Ulysse, C</au><au>Zyss, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples</atitle><jtitle>arXiv.org</jtitle><date>2011-05-25</date><risdate>2011</risdate><eissn>2331-8422</eissn><abstract>Dielectric resonators are open systems particularly interesting due to their wide range of applications in optics and photonics. In a recent paper [PRE, vol. 78, 056202 (2008)] the trace formula for both the smooth and the oscillating parts of the resonance density was proposed and checked for the circular cavity. The present paper deals with numerous shapes which would be integrable (square, rectangle, and ellipse), pseudo-integrable (pentagon) and chaotic (stadium), if the cavities were closed (billiard case). A good agreement is found between the theoretical predictions, the numerical simulations, and experiments based on organic micro-lasers.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.1009.5591</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2011-05 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085646196 |
source | Publicly Available Content Database |
subjects | Computer simulation Holes Open systems Photonics |
title | Trace formula for dielectric cavities II: Regular, pseudo-integrable, and chaotic examples |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T20%3A57%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Trace%20formula%20for%20dielectric%20cavities%20II:%20Regular,%20pseudo-integrable,%20and%20chaotic%20examples&rft.jtitle=arXiv.org&rft.au=Bogomolny,%20E&rft.date=2011-05-25&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.1009.5591&rft_dat=%3Cproquest%3E2085646196%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a516-534f531484889417dc1a3bf3eafc718501966c7501fd6aac8d8104b6aea60c2b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085646196&rft_id=info:pmid/&rfr_iscdi=true |