Loading…
Controlling the Dynamics of Many-Electron Systems from First Principles: A Marriage of Optimal Control and Time-Dependent Density-Functional Theory
Quantum Optimal Control Theory (QOCT) provides the necessary tools to theoretically design driving fields capable of controlling a quantum system towards a given state or along a prescribed path in Hilbert space. This theory must be complemented with a suitable model for describing the dynamics of t...
Saved in:
Published in: | arXiv.org 2010-09 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Quantum Optimal Control Theory (QOCT) provides the necessary tools to theoretically design driving fields capable of controlling a quantum system towards a given state or along a prescribed path in Hilbert space. This theory must be complemented with a suitable model for describing the dynamics of the quantum system. Here, we are concerned with many electron systems (atoms, molecules, quantum dots, etc) irradiated with laser pulses. The full solution of the many electron Schr{\"{o}}dinger equation is not feasible in general, and therefore, if we aim to an ab initio description, a suitable choice is time-dependent density-functional theory (TDDFT). In this work, we establish the equations that combine TDDFT with QOCT, and demonstrate their numerical feasibility with examples. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1009.2241 |