Loading…
Doping of Bi2Te3 using electron irradiation
Electron irradiation is investigated as a way to dope the topological insulator Bi2Te3. For this, p-type Bi2Te3 single crystals have been irradiated with 2.5 MeV electrons at room temperature and electrical measurements have been performed in-situ as well as ex-situ in magnetic fields up to 14 T. Th...
Saved in:
Published in: | arXiv.org 2013-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Electron irradiation is investigated as a way to dope the topological insulator Bi2Te3. For this, p-type Bi2Te3 single crystals have been irradiated with 2.5 MeV electrons at room temperature and electrical measurements have been performed in-situ as well as ex-situ in magnetic fields up to 14 T. The defects created by irradiation act as electron donors allowing the compensation of the initial hole-type conductivity of the material as well as the conversion of the conductivity from p- to n-type. The changes in carrier concentration are investigated using Hall effect and Shubnikov-de Haas (SdH) oscillations, clearly observable in the p-type samples before irradiation, but also after the irradiation-induced conversion of the conductivity to n-type. The SdH patterns observed for the magnetic field along the trigonal axis can be entirely explained assuming the contribution of only one valence and conduction band, respectively, and Zeeman-splitting of the orbital levels. |
---|---|
ISSN: | 2331-8422 |
DOI: | 10.48550/arxiv.1312.0242 |