Loading…
A left topological monoid associated to a topological groupoid
This paper presents a fanctor \(S\) from the category of groupoids to the category of semigroups. Indeed, a monoid \(S_G\) with a right zero element is related to a topological groupoid \(G\). The monoid \(S_G\) is a subset of \(C(G,G)\), the set of all continuous functions from \(G\) to \(G\), and...
Saved in:
Published in: | arXiv.org 2013-11 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Amiri, Habib |
description | This paper presents a fanctor \(S\) from the category of groupoids to the category of semigroups. Indeed, a monoid \(S_G\) with a right zero element is related to a topological groupoid \(G\). The monoid \(S_G\) is a subset of \(C(G,G)\), the set of all continuous functions from \(G\) to \(G\), and with the compact- open topology inherited from C(G,G) is a left topological monoid. The group of units of \(S_G\), which is denoted by \(H(1)\), is isomorphic to a subgroup of the group of all bijection map from \(G\) to \(G\) under composition of functions. Moreover, it is proved that \(H(1)\) is embedded in the group of all invertible linear operators on \(C(G)\), the set of all complex continuous function on \(G\). |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085887620</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085887620</sourcerecordid><originalsourceid>FETCH-proquest_journals_20858876203</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TISU0rUSjJL8jPyU_PTE7MUcjNz8vPTFFILC7OT85MLElNAcoqJKIoSS_KLy0AKuJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtTCwtzMyMDY-JUAQDPFjiY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085887620</pqid></control><display><type>article</type><title>A left topological monoid associated to a topological groupoid</title><source>Publicly Available Content Database</source><creator>Amiri, Habib</creator><creatorcontrib>Amiri, Habib</creatorcontrib><description>This paper presents a fanctor \(S\) from the category of groupoids to the category of semigroups. Indeed, a monoid \(S_G\) with a right zero element is related to a topological groupoid \(G\). The monoid \(S_G\) is a subset of \(C(G,G)\), the set of all continuous functions from \(G\) to \(G\), and with the compact- open topology inherited from C(G,G) is a left topological monoid. The group of units of \(S_G\), which is denoted by \(H(1)\), is isomorphic to a subgroup of the group of all bijection map from \(G\) to \(G\) under composition of functions. Moreover, it is proved that \(H(1)\) is embedded in the group of all invertible linear operators on \(C(G)\), the set of all complex continuous function on \(G\).</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Chemical industry ; Continuity (mathematics) ; Linear operators ; Monoids ; Operators (mathematics) ; Subgroups ; Topology</subject><ispartof>arXiv.org, 2013-11</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085887620?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>777,781,25735,36994,44572</link.rule.ids></links><search><creatorcontrib>Amiri, Habib</creatorcontrib><title>A left topological monoid associated to a topological groupoid</title><title>arXiv.org</title><description>This paper presents a fanctor \(S\) from the category of groupoids to the category of semigroups. Indeed, a monoid \(S_G\) with a right zero element is related to a topological groupoid \(G\). The monoid \(S_G\) is a subset of \(C(G,G)\), the set of all continuous functions from \(G\) to \(G\), and with the compact- open topology inherited from C(G,G) is a left topological monoid. The group of units of \(S_G\), which is denoted by \(H(1)\), is isomorphic to a subgroup of the group of all bijection map from \(G\) to \(G\) under composition of functions. Moreover, it is proved that \(H(1)\) is embedded in the group of all invertible linear operators on \(C(G)\), the set of all complex continuous function on \(G\).</description><subject>Chemical industry</subject><subject>Continuity (mathematics)</subject><subject>Linear operators</subject><subject>Monoids</subject><subject>Operators (mathematics)</subject><subject>Subgroups</subject><subject>Topology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TISU0rUSjJL8jPyU_PTE7MUcjNz8vPTFFILC7OT85MLElNAcoqJKIoSS_KLy0AKuJhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtTCwtzMyMDY-JUAQDPFjiY</recordid><startdate>20131102</startdate><enddate>20131102</enddate><creator>Amiri, Habib</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131102</creationdate><title>A left topological monoid associated to a topological groupoid</title><author>Amiri, Habib</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20858876203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemical industry</topic><topic>Continuity (mathematics)</topic><topic>Linear operators</topic><topic>Monoids</topic><topic>Operators (mathematics)</topic><topic>Subgroups</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Amiri, Habib</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amiri, Habib</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A left topological monoid associated to a topological groupoid</atitle><jtitle>arXiv.org</jtitle><date>2013-11-02</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>This paper presents a fanctor \(S\) from the category of groupoids to the category of semigroups. Indeed, a monoid \(S_G\) with a right zero element is related to a topological groupoid \(G\). The monoid \(S_G\) is a subset of \(C(G,G)\), the set of all continuous functions from \(G\) to \(G\), and with the compact- open topology inherited from C(G,G) is a left topological monoid. The group of units of \(S_G\), which is denoted by \(H(1)\), is isomorphic to a subgroup of the group of all bijection map from \(G\) to \(G\) under composition of functions. Moreover, it is proved that \(H(1)\) is embedded in the group of all invertible linear operators on \(C(G)\), the set of all complex continuous function on \(G\).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2013-11 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2085887620 |
source | Publicly Available Content Database |
subjects | Chemical industry Continuity (mathematics) Linear operators Monoids Operators (mathematics) Subgroups Topology |
title | A left topological monoid associated to a topological groupoid |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A17%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20left%20topological%20monoid%20associated%20to%20a%20topological%20groupoid&rft.jtitle=arXiv.org&rft.au=Amiri,%20Habib&rft.date=2013-11-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085887620%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20858876203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085887620&rft_id=info:pmid/&rfr_iscdi=true |