Loading…

On the heat diffusion for generic Riemannian and sub-Riemannian structures

In this paper we provide the small-time heat kernel asymptotics at the cut locus in three relevant cases: generic low-dimensional Riemannian manifolds, generic 3D contact sub-Riemannian manifolds (close to the starting point) and generic 4D quasi-contact sub-Riemannian manifolds (close to a generic...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-12
Main Authors: Barilari, Davide, Boscain, Ugo, Charlot, Grégoire, Neel, Robert W
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Barilari, Davide
Boscain, Ugo
Charlot, Grégoire
Neel, Robert W
description In this paper we provide the small-time heat kernel asymptotics at the cut locus in three relevant cases: generic low-dimensional Riemannian manifolds, generic 3D contact sub-Riemannian manifolds (close to the starting point) and generic 4D quasi-contact sub-Riemannian manifolds (close to a generic starting point). As a byproduct, we show that, for generic low-dimensional Riemannian manifolds, the only singularities of the exponential map, as a Lagragian map, that can arise along a minimizing geodesic are \(A_3\) and \(A_5\) (in the classification of Arnol'd's school). We show that in the non-generic case, a cornucopia of asymptotics can occur, even for Riemannian surfaces.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085892984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085892984</sourcerecordid><originalsourceid>FETCH-proquest_journals_20858929843</originalsourceid><addsrcrecordid>eNqNirEKwjAUAIMgWLT_8MC5EJNW01kUcRHEvcT21aboi-Yl_6-Dg6PTwd1NRKa0XhWmVGomcuZRSqnWG1VVOhPHE0EcEAa0ETrX94mdJ-h9gBsSBtfC2eHDEjlLYKkDTtfiR3EMqY0pIC_EtLd3xvzLuVjud5ftoXgG_0rIsRl9CvRJjZKmMrWqTan_u97BZzz6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085892984</pqid></control><display><type>article</type><title>On the heat diffusion for generic Riemannian and sub-Riemannian structures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Barilari, Davide ; Boscain, Ugo ; Charlot, Grégoire ; Neel, Robert W</creator><creatorcontrib>Barilari, Davide ; Boscain, Ugo ; Charlot, Grégoire ; Neel, Robert W</creatorcontrib><description>In this paper we provide the small-time heat kernel asymptotics at the cut locus in three relevant cases: generic low-dimensional Riemannian manifolds, generic 3D contact sub-Riemannian manifolds (close to the starting point) and generic 4D quasi-contact sub-Riemannian manifolds (close to a generic starting point). As a byproduct, we show that, for generic low-dimensional Riemannian manifolds, the only singularities of the exponential map, as a Lagragian map, that can arise along a minimizing geodesic are \(A_3\) and \(A_5\) (in the classification of Arnol'd's school). We show that in the non-generic case, a cornucopia of asymptotics can occur, even for Riemannian surfaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Asymptotic properties ; Brownian motion ; Riemann manifold ; Riemann surfaces ; Singularities ; Theorems</subject><ispartof>arXiv.org, 2013-12</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085892984?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Barilari, Davide</creatorcontrib><creatorcontrib>Boscain, Ugo</creatorcontrib><creatorcontrib>Charlot, Grégoire</creatorcontrib><creatorcontrib>Neel, Robert W</creatorcontrib><title>On the heat diffusion for generic Riemannian and sub-Riemannian structures</title><title>arXiv.org</title><description>In this paper we provide the small-time heat kernel asymptotics at the cut locus in three relevant cases: generic low-dimensional Riemannian manifolds, generic 3D contact sub-Riemannian manifolds (close to the starting point) and generic 4D quasi-contact sub-Riemannian manifolds (close to a generic starting point). As a byproduct, we show that, for generic low-dimensional Riemannian manifolds, the only singularities of the exponential map, as a Lagragian map, that can arise along a minimizing geodesic are \(A_3\) and \(A_5\) (in the classification of Arnol'd's school). We show that in the non-generic case, a cornucopia of asymptotics can occur, even for Riemannian surfaces.</description><subject>Asymptotic properties</subject><subject>Brownian motion</subject><subject>Riemann manifold</subject><subject>Riemann surfaces</subject><subject>Singularities</subject><subject>Theorems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNirEKwjAUAIMgWLT_8MC5EJNW01kUcRHEvcT21aboi-Yl_6-Dg6PTwd1NRKa0XhWmVGomcuZRSqnWG1VVOhPHE0EcEAa0ETrX94mdJ-h9gBsSBtfC2eHDEjlLYKkDTtfiR3EMqY0pIC_EtLd3xvzLuVjud5ftoXgG_0rIsRl9CvRJjZKmMrWqTan_u97BZzz6</recordid><startdate>20131211</startdate><enddate>20131211</enddate><creator>Barilari, Davide</creator><creator>Boscain, Ugo</creator><creator>Charlot, Grégoire</creator><creator>Neel, Robert W</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131211</creationdate><title>On the heat diffusion for generic Riemannian and sub-Riemannian structures</title><author>Barilari, Davide ; Boscain, Ugo ; Charlot, Grégoire ; Neel, Robert W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20858929843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Asymptotic properties</topic><topic>Brownian motion</topic><topic>Riemann manifold</topic><topic>Riemann surfaces</topic><topic>Singularities</topic><topic>Theorems</topic><toplevel>online_resources</toplevel><creatorcontrib>Barilari, Davide</creatorcontrib><creatorcontrib>Boscain, Ugo</creatorcontrib><creatorcontrib>Charlot, Grégoire</creatorcontrib><creatorcontrib>Neel, Robert W</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barilari, Davide</au><au>Boscain, Ugo</au><au>Charlot, Grégoire</au><au>Neel, Robert W</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>On the heat diffusion for generic Riemannian and sub-Riemannian structures</atitle><jtitle>arXiv.org</jtitle><date>2013-12-11</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>In this paper we provide the small-time heat kernel asymptotics at the cut locus in three relevant cases: generic low-dimensional Riemannian manifolds, generic 3D contact sub-Riemannian manifolds (close to the starting point) and generic 4D quasi-contact sub-Riemannian manifolds (close to a generic starting point). As a byproduct, we show that, for generic low-dimensional Riemannian manifolds, the only singularities of the exponential map, as a Lagragian map, that can arise along a minimizing geodesic are \(A_3\) and \(A_5\) (in the classification of Arnol'd's school). We show that in the non-generic case, a cornucopia of asymptotics can occur, even for Riemannian surfaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085892984
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Asymptotic properties
Brownian motion
Riemann manifold
Riemann surfaces
Singularities
Theorems
title On the heat diffusion for generic Riemannian and sub-Riemannian structures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T15%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=On%20the%20heat%20diffusion%20for%20generic%20Riemannian%20and%20sub-Riemannian%20structures&rft.jtitle=arXiv.org&rft.au=Barilari,%20Davide&rft.date=2013-12-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085892984%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20858929843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085892984&rft_id=info:pmid/&rfr_iscdi=true