Loading…

Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging charac...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2013-12
Main Authors: Wolkow, Robert A, Livadaru, Lucian, Pitters, Jason, Taucer, Marco, Piva, Paul, Salomons, Mark, Cloutier, Martin, Martins, Bruno V C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Wolkow, Robert A
Livadaru, Lucian
Pitters, Jason
Taucer, Marco
Piva, Paul
Salomons, Mark
Cloutier, Martin
Martins, Bruno V C
description We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2085911221</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2085911221</sourcerecordid><originalsourceid>FETCH-proquest_journals_20859112213</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCs7MyUzOz1NwLMnPzUxWCCxNzCspzVVwyS8pVnDNS0zKSVVwSq3Mz0vRdfb1D1ZwzUlNLinKz8tMLuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtTS0NDIyNDY-JUAQBfdDXy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2085911221</pqid></control><display><type>article</type><title>Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics</title><source>Publicly Available Content Database</source><creator>Wolkow, Robert A ; Livadaru, Lucian ; Pitters, Jason ; Taucer, Marco ; Piva, Paul ; Salomons, Mark ; Cloutier, Martin ; Martins, Bruno V C</creator><creatorcontrib>Wolkow, Robert A ; Livadaru, Lucian ; Pitters, Jason ; Taucer, Marco ; Piva, Paul ; Salomons, Mark ; Cloutier, Martin ; Martins, Bruno V C</creatorcontrib><description>We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Automata theory ; Cellular automata ; CMOS ; Optical properties ; Quantum computing ; Quantum dots ; Silicon</subject><ispartof>arXiv.org, 2013-12</ispartof><rights>2013. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2085911221?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Wolkow, Robert A</creatorcontrib><creatorcontrib>Livadaru, Lucian</creatorcontrib><creatorcontrib>Pitters, Jason</creatorcontrib><creatorcontrib>Taucer, Marco</creatorcontrib><creatorcontrib>Piva, Paul</creatorcontrib><creatorcontrib>Salomons, Mark</creatorcontrib><creatorcontrib>Cloutier, Martin</creatorcontrib><creatorcontrib>Martins, Bruno V C</creatorcontrib><title>Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics</title><title>arXiv.org</title><description>We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.</description><subject>Automata theory</subject><subject>Cellular automata</subject><subject>CMOS</subject><subject>Optical properties</subject><subject>Quantum computing</subject><subject>Quantum dots</subject><subject>Silicon</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwCs7MyUzOz1NwLMnPzUxWCCxNzCspzVVwyS8pVnDNS0zKSVVwSq3Mz0vRdfb1D1ZwzUlNLinKz8tMLuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjAwtTS0NDIyNDY-JUAQBfdDXy</recordid><startdate>20131206</startdate><enddate>20131206</enddate><creator>Wolkow, Robert A</creator><creator>Livadaru, Lucian</creator><creator>Pitters, Jason</creator><creator>Taucer, Marco</creator><creator>Piva, Paul</creator><creator>Salomons, Mark</creator><creator>Cloutier, Martin</creator><creator>Martins, Bruno V C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20131206</creationdate><title>Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics</title><author>Wolkow, Robert A ; Livadaru, Lucian ; Pitters, Jason ; Taucer, Marco ; Piva, Paul ; Salomons, Mark ; Cloutier, Martin ; Martins, Bruno V C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_20859112213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Automata theory</topic><topic>Cellular automata</topic><topic>CMOS</topic><topic>Optical properties</topic><topic>Quantum computing</topic><topic>Quantum dots</topic><topic>Silicon</topic><toplevel>online_resources</toplevel><creatorcontrib>Wolkow, Robert A</creatorcontrib><creatorcontrib>Livadaru, Lucian</creatorcontrib><creatorcontrib>Pitters, Jason</creatorcontrib><creatorcontrib>Taucer, Marco</creatorcontrib><creatorcontrib>Piva, Paul</creatorcontrib><creatorcontrib>Salomons, Mark</creatorcontrib><creatorcontrib>Cloutier, Martin</creatorcontrib><creatorcontrib>Martins, Bruno V C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolkow, Robert A</au><au>Livadaru, Lucian</au><au>Pitters, Jason</au><au>Taucer, Marco</au><au>Piva, Paul</au><au>Salomons, Mark</au><au>Cloutier, Martin</au><au>Martins, Bruno V C</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics</atitle><jtitle>arXiv.org</jtitle><date>2013-12-06</date><risdate>2013</risdate><eissn>2331-8422</eissn><abstract>We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2013-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2085911221
source Publicly Available Content Database
subjects Automata theory
Cellular automata
CMOS
Optical properties
Quantum computing
Quantum dots
Silicon
title Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A41%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Silicon%20Atomic%20Quantum%20Dots%20Enable%20Beyond-CMOS%20Electronics&rft.jtitle=arXiv.org&rft.au=Wolkow,%20Robert%20A&rft.date=2013-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2085911221%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_20859112213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2085911221&rft_id=info:pmid/&rfr_iscdi=true